All posts by Cort Johnson

Large NK Cell Study Points to Autoimmunity and Inflammation in Chronic Fatigue Syndrome (ME/CFS)

The observed differences in some of the subpopulations of T and NK cells between patients and healthy controls could define a distinct immunological profile that can help in the diagnostic process of ME/CFS patients, contribute to the recognition of the disease and to the search of more specific treatments. Rivas et. Al. 2018

Problems with natural killer (NK) cell functioning have been like an anchor in the storm for immunologists interested in chronic fatigue syndrome (ME/CFS). While other immune results like cytokines have flipped and flopped all over the place, the NK cytotoxic results have been solid. Almost every study has found that when given the chance to kill infected cells, the NK cells in ME/CFS patients poop out.  (The studies which have not found differences in NK cell functioning have tended not to use whole blood or used older samples – suggesting that something in the blood could be impairing NK cell functioning in ME/CFS.)

Dr. Daniel Peterson, Sierra Internal Medicine and Simmaron Scientific Advisor

The most extensive study – a year-long 2012 study involving Dr. Peterson and Griffith University in Australia – found reduced natural killer cell functioning at all time points. (Peterson has a long history of interest in natural killer cells; he was a co-author of the first study, over thirty years ago, to find deficient NK cell functioning in chronic fatigue syndrome (ME/CFS).)

NK cells are important because they maintain the lines of our initial immune defense, holding the fort, so to speak, until the big guns – the T and B cells- wipe out the infection. – They also regulate the immune response.

Normally our cells signal that they are infected by displaying peptide fragments from the pathogen (using MHC Class 1 molecules) on their surface. NK cells then hunt out and destroy these infected cells. However, some pathogens have learned how to prevent the cells they’ve infected from displaying these peptide fragments.

If NK cells and other parts of the innate immune response can’t hold back the invaders, the pathogens may invade more deeply into the body, potentially causing more problems before the adaptive immune response (T and B-cells) can kick in.

innate immune response

Mast cells, complement, phagocytic cells and natural killer cells man the early or innate immune response

A deficient early response to pathogens would then very likely translate into more symptoms. We don’t know when the problems with NK cell killing got started in ME/CFS, but if they were in place prior to the illness or occurred early in the illness they could have played a role in the inception of ME/CFS as people who have more trouble fighting off a pathogen; i.e. people with more severe symptoms, are more likely to come down with ME/CFS.

Once ME/CFS has begun, the inhibited NIK killing response could mean more trouble removing tumor and infected cells – particularly herpes virus infected cells- as people deficient in NK cells  have trouble fighting off herpes viruses.

NK cells, then, are vitally important, but attempts to identify issues other than cytotoxic killing abilities have been less successful. NK cells come in different types (cytotoxic and regulatory) and the balance of these subpopulations is important. Some studies have found differences in these subpopulations in ME/CFS and some have not.

Many of those studies, however, have been small and used less than stringent criteria for defining ME/CFS. A Spanish group decided to rectify those problems with a more definitive study which examined NK cell populations in a larger study (n=149) with patients who met the Canadian Consensus Criteria for ME/CFS. In order to ensure they captured all factors in the blood that might be whacking NK cells, they used whole blood and analyzed it within 6 hours of collection.

Then they tried to reverse engineer their results to see if a diagnostic test could be developed which simply charted which kinds of NK cells a person had. That was pretty good, but then they went further and asked if people who were worse off had different subpopulations of NK cells or more evidence of herpes virus reactivations (EBV, HMCV).

Association of T and NK Cell Phenotype With the Diagnosis of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) Jose Luis Rivas,1,* Teresa Palencia,1 Guerau Fernández,2 and Milagros García1,3 Front Immunol. 2018; 9: 1028.Published online 2018 May 9. doi:  10.3389/fimmu.2018.01028

This larger, fresher (quick analysis of blood), stricter (CCC patients only) and more comprehensive study found differences where others had not – and plenty of them.  This group validated – with a high degree of certainty (p = 0.0075) – previous findings of  an increased subpopulation of NK cells (NK CD56++(high)) which, get this, excrete more cytokines (particularly IFN-y), possibly causing more symptoms, but which have low cytotoxic activity.  Because these cells have unusually long life spans and pump out cytokines that cause more T-cell proliferation, higher numbers of them could contribute to autoimmunity and inflammation.

These cells were particularly high in the group of patients whose illness began without evidence of an infection. The Spanish group suggested that activation of the stress response via the HPA axis and raised levels of catecholamines such as norepinephrine (adrenaline) could have triggered the expansion of this potentially autoimmune affecting natural killer cell subset.

No differences were found, however, in the levels of several receptors (NKp46, NKp30, NKp44) that have been found elevated in some autoimmune/inflammatory conditions (Sjogren’s Syndrome, Crohn’s disease) or reduced in chronic infections (HIV, tuberculosis, influenza, etc.).

CD 69

Increased levels of the CD 69 marker suggested autoimmunity may be present in ME/CFS

Reduced levels of a receptor (NKG2C) were very common (p<0.0001) in ME/CFS. When this receptor, which is only found in NK cells, is activated by the presence of virally infected cells, it triggers an expansion of NK cells. Not surprisingly, NK cells become dotted with this receptor in people with chronic herpesvirus and other infections (HCMV, EBV) but ME/CFS patients’ NK cells had consistently lower levels of this receptor than did the healthy controls.  The authors didn’t speculate why this occurred, but it could involve lower levels of infection in ME/CFS – something Ron Davis is finding in his severely ill cohort – or a problem responding to infections that are present.

That second possibility was buttressed by an inverse correlation found between a marker of infection (CD 57+) and the lower expression of a marker (NKp46) which is often reduced in herpesvirus infections. The authors suggested that the scenario found in ME/CFS (increased cd57+, lower NKp46, high NKG2C) could reflect HCMV (cytomegalovirus) reactivation.

Watch Natural Killer T-cells (red) Swallow Up Antigen Presenting Dendritic Cells (green)

 

Increased levels of the CD69 marker (p= 0.011) provided another suggestion that ME/CFS may be an autoimmune/inflammatory disease. This important marker, which is found on many immune cells, stimulates NK cell cytotoxic activity. More importantly, CD69 has been described as a master regulator for autoimmunity in rheumatoid arthritis (RA) through its upregulation of TGF-B – one of the very few cytokines that has usually been found increased in ME/CFS.

A “descent” in T regulatory cells similar to that found in autoimmune conditions such as lupus and RA was also found. Finally, an inverted Th17/T regulatory cell ratio, which is also found in autoimmune conditions like lupus, wrapped up the autoimmune connections found in this study.

Using a mathematical classification model, the group was able to correctly diagnose 70% of ME/CFS patients and healthy controls simply by using the findings from this in depth study of natural killer cell populations.

Conclusions

This large Spanish study of NK cell subpopulations found numerous irregularities in NK cell types in ME/CFS, several of which pointed to issues with autoimmunity and/or inflammation. As in other studies, this study indicates that larger is indeed better when it comes to studying ME/CFS.

The study validated prior findings of an unusually large set of NK cells which produce more cytokines – conceivably causing more symptoms and immune activation – but which are less effective at killing infected cells.  That finding seemed to jive with a picture of highly symptomatic ME/CFS patients who may have trouble fighting off infections.

While no differences were found in the levels of receptors which can be elevated in autoimmune conditions, several other findings suggested that NK cells may be fighting off herpesvirus infections or may be involved in autoimmune/inflammatory processes in ME/CFS.

Finally, using just NK cell subpopulation data, the authors were able to correctly identify 70% of patients and healthy controls, indicating that significant NK cell differences exist. All told, the study identified several natural killer irregularities that could participate in autoimmunity and dysregulate other parts of the immune system.


Montreal ME/CFS II: Stopping PEM, the Antibody Subset and Unutmaz’s Big Surprise

The second part of a several part series on the Montreal ME/CFS conference focuses on the immune system.

Part 1: The Montreal ME/CFS Conference: Metabolism and Exercise can be viewed here.

Dr. Nancy Klimas: From Biomarkers to Modeling and Clinical Trials; GWS and ME/CFS

Years of work appear to be coming to fruition for Dr. Klimas. Her ability to hook into GWS funding has made a huge difference in her ability to test out her modeling protocols.  It’s remarkable to see the Dept of Defense lay down $40 million per year for the vets affected during the Gulf War 27 years ago, while ME/CFS gets so little. The vets undoubtedly deserve it and they deserve more – many lives were shredded as a result of the war and they’ve fought for years to get recognition. However, the disconnect between the way the feds have treated GWI and ME/CFS – a disease which affects far more people – is startling.  The Dept of Defense hasn’t done great by its vets, but it’s been much more responsive to them than the feds have been to ME/CFS and fibromyalgia.

Nancy Klimas

Years of work appear to be coming to fruition for Dr. Klimas

Dr. Klimas noted that the more we look, the more immune abnormalities are being found.  Cytokines may not tell us what is causing ME/CFS, but they sure could help us find drugs to combat it.  Klimas is comparing the immune signatures she’s seeing in ME/CFS with those of other diseases and then checking out what’s working in those diseases. The good news is that immune-affecting drugs are big business now, with more and more coming on the market. If ME/CFS is, at its heart, an immune disorder, or if the immune system plays a large role – as many think it does – drugs developed for other diseases may be able to help.

Dr. Klimas and her researchers have been asserting for years that ME/CFS patients are stuck in a kind of suboptimal, self-reinforcing homeostatic space; i.e. their systems have been rewired to produce a new normal.

That idea doesn’t seem to be all that far from Naviaux’s belief that people with ME/CFS are stuck in a Dauer state or Dr. Cheney’s report that while he could push patients towards health, something would pull them back.  Both Klimas and Naviaux believe a series of structured moves will be needed to move the system back to normal. Neither believes it’s easy; Klimas says real “force” will be needed to move the system back into health.

Klimas should know – she’s been intensively charting how ME/CFS patients’ systems go off the rails during exercise for several years now. She’s measured every cytokine, neuropeptide, etc. she can at 8 timepoints before, during and after exercise in 50 women with ME/CFS, 25 women with FM, 50 men with ME/CFS and 50 men with GWI.

She’s gathered a vast amount of data and that data is telling her that ME/CFS patients’ immune systems basically go nuts during the first 15 minutes of exercise.  Four hours later, oxidative stress kicks in and the autonomic nervous and endocrine systems and metabolism get hit — but it’s the immune system that kicks everything off.

The big surprise is how different chronic fatigue syndrome (ME/CFS) is from Gulf War Illness. The metabolism gets hit hard in ME/CFS – everything gets shut down – but in GWI, all the pathways are ramped up. They’re two completely different illnesses which from the outside look exactly the same.

Dr. Klimas and her team have been running sophisticated modeling techniques on supercomputers to figure out how to get our systems back to normal. Initially, they ran into trouble with women who, no surprise, have much more complex systems than men. Back to the drawing board they went. In the end, Dr. Klimas’s team was able to create a virtual clinical trial in GWS. First, they brought down brain inflammation using etanercept, and then readjusted the HPA axis with a glucocorticoid receptor blocker, mifeprestone.

It worked on the computer – their virtual GWS patient returned to health system – but the big test came with their Gulf War Syndrome mouse model.  When the drug combo was able to return the GWS mouse to health they really knew they were onto something. An open label phase I trial in GWS is under way as we speak.

supercomputers ME/CFS

Her team has used supercomputers to create virtual clinical trials

Dr. Klimas noted that the $30 million the DOD is providing for GWI has made a big difference where the rubber meets the road in medicine – in ten clinical trials that are underway. That’s in a disease that effects fewer people than ME/CFS but which receives federal funding for clinical trials.  That’s not true for chronic fatigue syndrome (ME/CFS) – federal funding for clinical trials is pretty much blocked.

Researchers can apply for clinical trial funding at NINDS and other institutes, but ME/CFS doesn’t have a chance against diseases like Parkinson’s and Alzheimer’s. The big issue is that the program announcement for ME/CFS – which lists subjects researchers can apply to study – doesn’t allow them to submit clinical trials proposals.

Dr. Koroshetz’s promise last year to get that language embedded into the ME/CFS PA hasn’t paid off yet. Getting that wording embedded into the PA for ME/CFS could open up funding for clinical trials. That would be a big step forward.

Dr. Klimas doesn’t have a mouse model for ME/CFS but she’s been doing the same computer modeling she used in GWS on ME/CFS. It’s clear that nobody at this point understands more about what happens during exercise in ME/CFS than Dr. Klimas. Nobody has been able to translate mountains of exercise data into virtual clinical trials. Nobody has proposed a staggered two-drug approach to ME/CFS, and nobody probably has a better shot at stopping PEM than her.  This is new stuff not just for us but for the medical field in general. Let’s hope it works out.

The GWS trial is underway and she hopes to get her chance at halting the PEM in its tracks in ME/CFS in a small trial later this year. Getting funding, of course, will be crucial.

ME/CFS rather suddenly has several drug/drug trial possibilities: they include Cortene, Dr. Klimas’s drug combo, immunoadsorption (see below), Fluge and Mella’s Norwegian cyclophosphamide trial,  Ampligen and Dr. Kaiser’s Synergy drug-nutrient combination – and, of course, Rituximab is still surely in the picture for a subset of patients.

Carmen Scheibenbogen

Scheibenbogen is a mover and shaker. She’s published six papers on ME/CFS in the past three years, is a leader in the Euromene Group, has been talking to pharmaceutical companies about drugs, and is organizing a fatigue conference in Germany to get some good networking going.

Rowe - scheibenbogen - ME/CFS

Dr. Rowe called Dr. Scheibenbogen’s antibody findings one of the most exciting ME/CFS research findings in years.

Peter Rowe called her recent autoantibody papers one of the most exciting recent developments in the field. Scheibenbogen, interestingly, got the idea to do those studies from similar recent findings in POTS (postural orthostatic tachycardia syndrome).

Scheibenbogen rattled off some of the commonalities between autoimmune diseases and ME/CFS. Both predominantly affect women, both are often triggered by an infection and she’s found a high family history of autoimmunity in ME/CFS.  Plus, Epstein-Barr virus – a common trigger in chronic fatigue syndrome (ME/CFS) – invades B-cells which are the main drivers of autoimmunity. The difficulty ME/CFS patients and others have fighting off the virus when exposed to it later in life apparently gives the immune system plenty of opportunity to make a mistake and begin attacking our own tissues.

Check out a recent breakthrough in EBV-associated autoimmunity

The Autoimmune Virus? Groundbreaking EBV Finding Could Help Explain ME/CFS

Rituximab is used to treat autoimmune diseases. The Rituximab ME/CFS trial’s main endpoint failed but Scheibenbogen asserted that we shouldn’t count Rituximab out at all. She believes, and she would know, because she’s studied Rituximab patients, that Rituximab will be shown to be effective in a subset of patients.  An effective treatment in a subset of ME/CFS patients would be a big deal – particularly for those patients.

Scheibenbogen found increased levels of antibodies in about 40% of ME/CFS patients, and Bergquist’s study that is currently underway thankfully had similar results. At least right now it appears that the 40% figure is solid, but the search for antibodies in ME/CFS is not over. When I asked Scheibenbogen if other antibodies might be involved, she said, yes, other antibodies probably will apply. If that’s so, that 40% number could go up. Scheibenbogen noted that the B2 and muscarinic antibodies that have been showing up in ME/CFS are part of a larger network.

Interestingly, these are not autoantibodies; they’re natural antibodies which affect breathing, the circulation and the gut. Their high levels in ME/CFS appear to be throwing those systems off.

Immunoadsorption

Immunoadsorption is another possible immune treatment for chronic fatigue syndrome (ME/CFS). Immunoadsorption, which is similar to, but more effective than plasmaphoresis, removes IgG autoantibodies from the blood. It’s an expensive treatment – about $20,000.

Like Rituximab it will probably be effective in a subset of patients. Scheibenbogen’s small immunoadsorption trial of ME/CFS patients with specific autoantibodies found that the treatment did what it was supposed to do – it significantly reduced antibody levels for at least six months.

Symptoms improved in most patients and some patients completely recovered. Three are still in remission a year after the treatment ended. One person completely recovered for 6-7 weeks but then relapsed. After she relapsed, she could hardly walk again. The trial suggested that Scheibenbogen is on the right track with her autoimmune studies. The fact that POTS is so prevalent in ME/CFS and has similar autoantibody issues suggests that the outcome is not such a surprise.

The trial was small and carefully curated to those with high antibody levels but most patients improved and some recovered

The trial was small and carefully curated to those with high antibody levels but most patients improved and some recovered

A follow-up study is beginning. If that works out, Scheibenbogen hopes for a big trial that will settle the issue definitively.  In a good sign, she reported that the company that produces the immunoadsorption treatment (not available in the U.S.) is quite interested in ME/CFS.

(Even if the treatment is not available in the U.S., a successful trial could do a couple of things: it could prompt the company to make the treatment available in the U.S., and it would surely enhance autoimmunity research. We’ll see what happens, but if we can come up with several treatments – each of which is effective in a subset of patients – we’ll start to whittle the disease down.)

As she left for the airport, Scheibenbogen said she hopes that in the next five years ways to diagnose and treat ME/CFS will be found. Let it be so…

Guidelines to Biomarker Produced

Euromene, the new ME/CFS European research group Scheibenbogen is working with, recently laid out a step-by-step pathway to develop a biomarker. She noted that we have lots of interesting findings, but none that are unique to ME/CFS. Plus, the findings we do have overlap too much with healthy controls.

In short, we haven’t found that key signature – that key physiological mark – which says a person has ME/CFS. (That may not be a surprise: until we find the core of ME/CFS, we may not be able to find a unique biomarker). Scheibenbogen did wonder, however, given Maureen Hanson’s recent inability to find subsets in her metabolomic data, if the biomarker for ME/CFS will be metabolic in nature.

 

Unutmaz’s Big Surprise

Ron Davis has noted things often don’t work out the way researchers expect them to. Apparently, Derya Unutmaz feels the same way.  Unutmaz got a T-cell result that pointed straight at the gut and then was pleasantly shocked when a look at the gut confirmed his findings.  He was expecting a few more twists and turns from the body! It’s not usually so easy.

He noted that over the past decade a tremendous amount of work has been done on the effects the gut microbiome (gut bacteria) have on the immune system. It’s now clear that a shift toward more inflammatory bacteria in the gut can result in inflammation in other parts of the body. In fact, Unutmaz reported that just about every disease is associated with a change in gut bacteria.  The bacteria play such a vital role that oncologists can even determine how effectively patients will respond to immunotherapies by assessing the kind of bacteria they carry in their guts.

That makes sense for ME/CFS, since every gut bacteria study has thus far found substantial alterations in the bacteria in ME/CFS patients’ guts.

Unutmaz is a T-cell guy. He knows that bacterial metabolic by-products trigger unusual T-cells called  MAIT T-cells (Mucosal associated invariant T cells) to get into action. Once these cells, which are found in our gut lining, liver, lungs, etc., come across those metabolites, they secrete pro-inflammatory cytokines. Those cytokines turn monocyte cells into hairy monsters called macrophages which then gobble up the bacterial-infected cells.

MAIT cells, then, play a key role in turning on our immune response to the bad bacteria that can live in our guts. They apparently lurk in the gut lining as a kind of last line of defense against those bacteria getting into our blood stream and invading the rest of the body.

gut bacteria chronic fatigue

Unutmaz’s findings suggested that T-cells in the ME/CFS patients’ guts had been repeatedly exposed to bad bacteria

Unutmaz found that a high percentage of MAIT cells had been repeatedly activated in ME/CFS patients – suggesting a plethora of bad bacteria was present. In true ME/CFS fashion, Unutmaz also found that ME/CFS patients’ MAIT cells were activated — but “punked out” at the same time. (A wired and tired immune cell?).  Seemingly exhausted by the continual stimulation, they (like their natural killer cell cousins) had problems killing infected cells. That hearkened back to the Lipkin/Hornig immune finding of activated immune systems in early-duration ME/CFS patients and depleted immune systems in longer- duration patients.

Unutmaz is now trying to identify which bacteria are tweaking ME/CFS patients’ MAIT T-cells so much as to possibly burn them out. If he’s successful, he may have found a target that could quiet down a possibly overworked and burnt-out immune system and allow it to rejuvenate.

Are Chronic Fatigue Syndrome (ME/CFS) and Fibromyalgia Immune Exhaustion Disorders?

Part 1: The Montreal ME/CFS Conference: Metabolism and Exercise

 

The Autoimmune Virus? Groundbreaking EBV Finding Could Help Explain ME/CFS

Viral Mystery 

“I’ve been a co-author in almost 500 papers. This one is more important than all of the rest put together. It is a capstone to a career in medical research,” Harley

I sensed some awe in Ron Davis’s voice as he pushed for more understanding of Epstein-Barr Virus’s effects in ME/CFS during a talk at the Brain Science conference.  Davis is not to my knowledge finding much evidence of EBV reactivation in the severe ME/CFS patient study – a surprise – but he is very interested in what happened during that initial EBV infection, which appears to have triggered chronic fatigue syndrome (ME/CFS) in so many people.

Epstein-barr chronic fatigue

A large, complex and very common virus, EBV is responsible for infectious mononucleosis and appears to contribute to numerous autoimmune disorders.

He’s not alone in his “admiration” for the virus. Simmaron’s Advisor, Dr. Daniel Peterson, whose clinical practice and research stemmed from an outbreak in the Lake Tahoe region of Chronic Fatigue Syndrome, has tracked EBV in patients for decades, noting very high titers to EBV and other herpes viruses in subsets of patients.

It’s not surprising that these two important figures have had their eyes on EBV. EBV, after all, is kind of in a league of its own.  An invader of B and epithelial cells, the 50th anniversary of its discovery was recently celebrated with numerous reviews.  Epstein-Barr was discovered in 1966 by Anthony Epstein and Yvonne Barr. It was the first human virus shown to cause cancer. The sequencing of its large genome in 1995 helped launch the genomic era.

One of the more massive and complicated viruses, it’s one of the very few viruses that’s able to avoid elimination: once EBV infects your B-cells, it’s in your body to stay. It’s able to effectively hide from the immune system and reactivate just enough so that when the infected B-cells die it can move on to other cells.

We’re well equipped to ward off EBV when we’re young – it usually produces only minor symptoms – but as our immune systems alter as we age, that changes.  Encountering EBV as an adolescent or adult (infectious mononucleosis, glandular fever)  – as increasingly happens in our germ phobic age – often means months of convalescence as our immune systems struggle to ward off this powerful virus.

The problems don’t stop there. We know that infectious mononucleosis (IM) is a common trigger of ME/CFS but coming down with IM/glandular fever in adolescence has also been shown to increase one’s risk of coming down with multiple sclerosis 2-4 fold and lupus by fifty percent.  Because of EBV’s ability to remain latent in the body, EBV reactivations are a huge problem for transplant patients with compromised immune systems.

The big question concerning EBV is how a virus which has essentially been latent for decades could contribute to serious diseases like MS and lupus. We now may have the answer. Last week, what will probably turn out to be a seminal paper in pathogen research directly showed for the first time how EBV appears to be able to trigger autoimmune diseases later in life and could conceivably play a role in ME/CFS.

The rather hum drum title of the paper “Transcription factors operate across disease loci with EBNA2 implicated in autoimmunity” in the Nature Genetics Journal hardly hinted at the possibilities the paper presents.

Transcription factors operate across disease loci, with EBNA2 implicated in autoimmunity John B. HarleyXiaoting ChenMario PujatoDaniel MillerAvery MaddoxCarmy ForneyAlbert F. MagnusenArthur LynchKashish ChetalMasashi YukawaArtem BarskiNathan SalomonisKenneth M. KaufmanLeah C. Kottyan & Matthew T. Weirauch. Nature Genetics (2018) doi:10.1038/s41588-018-0102-3

EBV  consists of several proteins of which EBNA-2 is one. EBNA-2 is EBV’s main viral transactivator; i.e. it’s a transcription factor that turns on genes in an infected cell that help EBV to survive. Essentially EBNA-2 allows EBV to hijack a cell’s genetics and put them to its own use.

The study – produced by researchers at Cinncinnati’s Children Hospital – demonstrated that once EBV infects B-cells, it turns on genes that have been identified as risk factors for a boatload of autoimmune diseases.

It turns out that even though the virus is, so to speak, latent; i.e. it’s not replicating – its transcription factor is still active  – altering the expression of our genes. The genes that it affects just happen to be the same genes that increase the risk of developing lupus, multiple sclerosis (MS), rheumatoid arthritis (RA), juvenile idiopathic arthritis (JIA), inflammatory bowel disease (IBD), celiac disease, and type 1 diabetes.  Apparently decades of genetic assault from EBV’s transcription factor can set the stage or at least contribute to many autoimmune diseases.

Chronic diseases are usually caused by a variety of genetic and environmental factors. Because not everyone with these transcription factors comes down with a chronic illness, other factors must play a role. The authors believe, though, that the gene expression changes induced by the virus in the B cells could account for a large number of people with lupus and MS who fall ill.

“In lupus and MS, for example, the virus could account for a large percentage of those cases. We do not have a sense of the proportion in which the virus could be important in the other EBNA2-associated diseases,” Harley

Chronic Fatigue Syndrome and EBV/Infectious Mononucleosis – A Short History

Researchers have been trying to figure out – mostly unsuccessfully- what the heck happens to plunge people with infectious mononucleosis into ME/CFS for quite some time.

trigger

Infectious mononucleosis/glandular fever is believed to be a common trigger of ME/CFS

In fact, infectious mononucleosis/glandular fever was probably the first disease associated with ME/CFS. Studies in the mid-1990’s, including one from the CDC, suggested ME/CFS was, at least in part,  “chronic infectious mononucleosis” or “chronic mononucleosis syndrome“.  Even Stephen Straus penned a paper on the “The chronic mononucleosis syndrome“.

Straus’s small 1989 study reporting high rates of psychiatric diagnoses in ME/CFS patients prior to their becoming ill set a theme in motion which was disproved by two Peter White  ME/CFS IM publications.  White found IM/glandular fever to be a particularly strong trigger of ME/CFS which he concluded was probably responsible for about 3,000 new cases of ME/CFS a year in the U.K.

A 1992 Swedish study began a trend of examining people with ME/CFS during infectious mononucleosis and afterwards in order to try and determine what happened. That study concluded that whatever happened was not due to EBV reactivation.

In 2010 Taylor found reduced peak oxygen consumption during exercise in adolescents with ME/CFS after IM compared to IM patients who had recovered. Broderick’s finding of altered cytokine networks associated with Th17 in ME/CFS patients following IM suggested immune dysregulation had occurred.

Glaser’s 2005 study suggested that an EBV encoded enzyme produced by a non-replicating form of EBV could be producing symptoms in ME/CFS.  Lerner’s 2012 study suggested that antibodies to two EBV produced proteins were commonly present in ME/CFS – suggesting that a prolonged immune reaction to EBV might be occurring in ME/CFS as well.

In 2014 Loebel/Scheibenbogen suggested that ME/CFS patients may be having difficulty controlling the early stages of EBV reactivation.   Loebel’s 2017 follow up study suggested that ME/CFS patients’ immune system might be over-reacting to an EBV produced protein and that autoimmunity might be involved.

Leonard Jason’s large IM college student study will hopefully provide clues why some people never recover from it. He’s completing data analysis of a study examining college students who came down with infectious mononucleosis and then ME/CFS. So far Jason has found that at least 4-5% of college students come down with IM while at school.

Treatment Implications

Interestingly, several drugs that are available can block some of the transcription factors EBV has inserted into B-cells.  (I was unable to determine what they are.) The authors also hope the study will help spur more efforts to produce an EBV vaccine.

Next For ME/CFS and EBV

Now that we have evidence that EBV/IM contributes to many autoimmune diseases, it’s hard to think that ME/CFS is not somehow involved. Chronic fatigue syndrome is different in that infectious mononucleosis (and other infections) immediately triggers ME/CFS in many people. What we don’t know is if bouts of IM also trigger ME/CFS 5, 10, 15 or more years later as occurs in these other disorders.

Opportunities for Collaboration Open Up

The big question awaiting ME/CFS now is if the abnormal transcription factors associated with the autoimmune diseases in the recent paper are present. The good news is that a study determining that appears to be within reach of an ME/CFS researcher with the technical ability and funds. In an unusual move, the Cincinnati researchers are making the computer code they used available to other researchers.

“We are going to great lengths to not only make the computer code available, but all of the data and all of the results. We think it’s an interesting approach that could have implications for many diseases, so we’re contacting experts on the various diseases and sharing the results and seeing if they want to collaborate to follow-up on them.” Weinrauch

“This discovery is probably fundamental enough that it will spur many other scientists around the world to reconsider this virus in these disorders” Harley

Collaboration

The Cinncinnati team is providing its computer code free to other researchers

They believe EBV will be implicated in many more diseases, and there is already some evidence that it is.  Using the same analytical techniques, they’ve already identified 94 other diseases including many non-autoimmune diseases in which EBV may play a role.

This is one of the few studies in which the researchers are so jazzed by their results that they’ve dropped all pretenses to modesty. The study results need to be validated, but because EBV is so common and is potentially linked to so many autoimmune (and other diseases), it has the potential to rewrite our understanding of how autoimmune diseases arise. The authors fully recognize the potential importance of their finding. The lead author of the study, John Harley, said:

“I’ve been a co-author in almost 500 papers. This one is more important than all of the rest put together. It is a capstone to a career in medical research,” Harley

One of the senior authors of the study stated:

“This same cast of characters is a villain in multiple immune-related diseases. They’re playing that role through different ways, and doing it at different places in your genome, but it’s the same sinister characters. So if we could develop therapies to stop them from doing this, then it would help multiple diseases.” Matthew Weirauch

 

POTS Rising! Research & Advocacy Producing Breakthroughs in Neglected Disease

April 28, 2018

Remarkable Progress

It’s rare that a clear cause of disease like postural orthostatic tachycardia (POTS) or chronic fatigue syndrome (ME/CFS) or fibromyalgia (FM) shows up, but that appears to be what’s happening in POTS.

focus - POTS

Researchers are increasingly focusing on autoimmune aspects of POTS

The progress is all the more notable in POTS given the newness of the disease.  The name was only coined in 1993 and the disease still lacks a dedicated funding stream at the NIH (but see below). Nor does the NIH track POTS funding the way it does other diseases.  It was only recently that the World Health Organization created an ICD code specifically for POTS. While the disease is mostly an afterthought at the NIH, it affects a large number of people (1-3 million in U.S.)

Despite its humble beginnings remarkable progress in understanding the disease is being made.  That’s good news for people with ME/CFS given the high incidence of POTS (11-40%) in the disease. Plus it shows that even a small research community can make significant strides in a disease if they target the right area.

Autoimmune Disorder

With its female dominance and often an infectious trigger, POTS, like ME/CFS, has always been a candidate for classification as an autoimmune disease.  In fact, autoimmunity has been showing up in orthostatic intolerance in general lately. Plus it’s shown up in an array of cardiovascular diseases including hypertension, cardiomyopathy, myocarditis and cardiac arrhythmias, each of which can cause problems standing.

Orthostatic Hypotension

It turns out there are many ways to mess with our circulatory systems.  A University of Oklahoma group has been driving the findings in mostly small studies. In 2012 that group reported that people with orthostatic hypotension, who experience severe drops in blood pressure while standing, commonly had autoantibodies to the receptors on the outside of cells that regulate autonomic nervous system activity. Remarkably, autoantibodies  were found in no less than 75% of the study participants.

The adrenergic (B1AR, B2AR) and muscarinic (M2R, M3R) receptors identified affected blood flow across the body. Different symptoms appear to result depending on which receptor is involved.

People with severe blood pressure drops within a few minutes of standing, for instance, tended to harbor B2AR and M3R autoantibodies which affect the vasodilation of our blood vessels. Because our blood vessels constrict or narrow when we stand in order to halt the gravitational flow of blood to our limbs, vasodilation during standing is exactly the wrong strategy.

Other people with dramatic heart rate increases while standing tended to harbor M2R and/or β1AR autoantibodies.

POTS

In 2014 the Oklahoma group’s study in the Journal of American Heart Association found evidence of three autoantibodies in POTS. This time the Oklahoma group predicted they would find autoantibodies to a receptor (α1 adrenergic receptor – α1AR) that causes our blood vessels to contract.

They found that, but in a twist, they also found additional autoantibodies: to the β1AR receptor in all the POTS patients, and vasodilatory autoantibodies to the β2AR receptor in half of them. They believe that these autoantibodies enhance norepinephrine’s effect on the heart; i.e. they increase the heart rate problems in POTS.

Autoimmunity POTS

Autoimmune processes that affect the blood vessels may define disorders that produce problems with standing.

They posit, interestingly, that problems with blood pressure not heart rate increases are the primary problem in POTS. They believe that when POTS patients stand, their α1AR autoantibodies smack the αIAR receptors, causing problems with blood vessel contraction. That allows blood to drain from POTS patients’ brains into their lower bodies causing fatigue, dizziness, etc. In order to compensate, they jack up their sympathetic nervous system activity with norepinephrine in order to maintain blood pressure.

Unfortunately, since POTS patients also harbor autoantibodies which cause them to increase their heart rates, the result is sometimes astonishingly high heart rates while standing. Since a heart beating too fast has the same effect as a heart beating too low (reduced blood flow), the ploy doesn’t work and POTS patients experience dizziness, fatigue, etc. upon standing.

In effect the POTS patients struck out on two levels; not only did they have autoantibodies that might be imperiling their ability to maintain their blood pressure while standing, they also had autoantibodies that dramatically increased their heart rates.

New Study – New Autoantibody

In a follow up 2018 study published in the Journal of the American Heart Association, the group looked at an entirely different type of autoantibody – the angiotensin II type 1 receptor (AT1R) that regulates blood pressure via the renin-aldosterone system. The renin-aldosterone system also regulates blood volume, which is often low in ME/CFS.

The study was again small (17 POTS patients) plus 16 controls, but once again the results were highly significant with 12/17 POTS patients but none of the controls exhibiting autoantibodies to AT1R. Plus all the POTS patients also had autoantibodies to either or both of the AT1R and the α1‐adrenergic receptor.

Because the renin-angiotensin-aldosterone system works more slowly than the aforementioned responses, it appears that many POTS patients may suffer from both a rapid and a more prolonged dysregulation of their circulatory systems.  When placed in a rabbit model, the ATIR autoantibody effectively duplicated the effects of the α1AR autoantibody – it stopped the blood vessels from constricting properly, again resulting in blood pooling in the lower extremities – and in humans feelings of fatigue, dizziness, etc.

In a nice fit, several POTS studies have documented problems with the renin-angiotension-aldosterone system, which could be caused by autoantibodies like ATIR. One study, which found elevated Ang II levels and low aldosterone levels, suggested that receptor problems were interfering with transformation of Ang II to aldosterone. The authors of this study suggested that the autoantibody found could indeed be the missing link.

Another Autoantibody (!)

We’re still not done with autoantibodies in POTS. A recent presentation which found a fourth autoantibody (to the M1 receptor) suggested POTS patients may be swimming in autoantibodies which negatively affect their circulatory systems.

Spectrum Disorder?

These investigators believe POTS is part of a spectrum of diseases (OH, POTS, cardiovascular diseases, (ME/CFS?)), all of which harbor autoantibodies that interfere with blood vessel contraction/dilation and the heart rate.

Dysautonomia International – Moving Forward on POTS

Since being co-founded in 2012 by Lauren Stiles, Dysautonomia International has grown rapidly and is now providing substantial funding for POTS research. A very dynamic organization, I was glad to have the opportunity to ask its President about its POTS work, where we are on autoimmunity and POTS, and DI’s recent advocacy work.

What kind of POTS funding has Dysautonomia International provided? 

Dysautonomia International

Dysautonomia International has grown rapidly in just five years.

Dysautonomia International has funded over $300,000 in POTS Research Fund grants to support the work of Dr. David Kem and colleagues at University of Oklahoma, exploring the role of autoimmunity in POTS, seeking to identify diagnostic biomarkers, and eventually the development of targeted immune therapies. Dr. Kem’s recent publication documenting the presence of angiotensin receptor antibodies in POTS was one of several important publications that resulted from these grants, and there are additional autoimmune POTS related studies still in progress at the University of Oklahoma. We have also funded autoimmune POTS related studies at Mayo Clinic and University of Texas Southwestern, which are in progress.

How far are we from establishing that at least a major subset of POTS patients have an autoimmune disease?

Most POTS experts acknowledge that a subset of POTS patients have an autoimmune problem. Defining what percentage of patients that is depends on how we define what we mean by “an autoimmune problem.”

For example, the largest cohort study on POTS to date with over 4,000 patients enrolled (lead by Dysautonomia International, Vanderbilt University and University of Calgary), found that 16% of POTS patients report being diagnosed with a known autoimmune disease, most often Hashimoto’s, Sjogren’s, lupus and celiac.

Then there is a larger group of POTS patients who have positive blood tests on common antibody tests, such as TPO, ANA or SS-A, but they don’t meet the criteria for a known autoimmune disease.

POTS patients have signs of an autoimmune disease but larger studies are needed to validate them.

Then we have several small cohort studies, usually 40 patients or less, showing that nearly all POTS patients have antibodies to various cell surface receptors that play a role in regulating the autonomic nervous system (adrenergic, muscarinic and angiotensin antibodies).

This last category of antibodies are also present in other medical conditions, several of which are associated with autonomic dysfunction, such as orthostatic hypotension, Sjogren’s syndrome, Chagas disease, dilated cardiomyopathy, and ME/CFS.

We need a lot of additional research before we can go from “we found these interesting antibodies that might play a role in POTS” to “we’re sure POTS is an autoimmune disease,” but that research is happening at several universities. The antibody tests are being refined. The small cohort studies are being repeated on larger cohorts. Researchers are starting to look at immune modulating treatments too.

I’m proud to say that Dysautonomia International is very much part of this effort, not only funding many of the studies, but also facilitating the larger cohort studies at our annual conferences, and connecting researchers who should be talking to each other together.

The NIH didn’t have a dedicated funding platform for POTS research but now things are looking up. What happened?

After Dysautonomia International’s July 2017 Lobby Day and our first Congressional Briefing on POTS in October 2017, Congress adopted our requested language directing the NIH to “stimulate the field’ of POTS research and “develop strategies that will increase our understanding of POTS and lead to effective treatments.” We’re continuing to meet with NIH to see what this will lead to in 2018, which we hope will be NIH’s first POTS specific call for proposals. Find additional details on our blog.

Conclusion

The POTS autoimmune finding are helpful for ME/CFS in several ways.  For one they show that researchers even in greatly underfunded diseases can make substantial progress if they target the right area. Secondly they’re beginning to demonstrate a strong autoimmune basis for a disease which produces similar symptoms to ME/CFS and which has a substantial overlap with it. Finally some of the same autoantibodies (and other ones) have been found in ME/CFS and interest in ME/CFS as an autoimmune disorder is picking up.  A recent review paper presented evidence that at least a subset of ME/CFS patients have an autoimmune disease. That will be covered in a future blog.

Hope for an ME/CFS Autoimmune Subset: A German Researcher Steps Forward

German Researcher Steps Up

Carmen Scheibenbogen MD is another sign that the ME/CFS field is slowly but surely hopefully catching on. Scheibenbogen is relatively new to this field, but she’s not new to medical research. A trained oncologist and hematologist as well as a physician and Professor of Immunology in Berlin, her research resume includes over 150 publications dating back 25 years.

scheibenbogen

Dr Scheibenbogen has identified what she believes is an autoimmune subset in ME/CFS. (Image from Invest in ME)

In short, she’s a respected and established researcher, and one from Germany to boot. (I can’t remember the last German researcher to take on ME/CFS.) Her path to ME/CFS has not been an easy one. Germany hardly acknowledges ME/CFS as a disease, and doesn’t fund ME/CFS research – if I’m reading her right, there is apparently literally no avenue to apply for ME/CFS research funding there.

Yet she’s very quickly become one of our most prolific researchers. Over the past four years her team has published no less than seven papers, has won two Ramsay Awards, and played a central role in the development of the new European Research collaboration, EUROMENE. Her biosketch lists CFS/ME, Immunodeficiency, and Cancer Immunology as her main research interests.

Scheibenbogen’s first ME/CFS publication In 2014 found ME/CFS patients mounting a feeble response to Epstein-Barr virus (EBV) . The reduced response to EBV reactivation could help explain the ups and downs seen, particularly during stressful situations.

In 2016, figuring that when Rituximab worked in ME/CFS it probably did so by whacking antibody producing B-cells, her group examined antibodies against a variety of receptors that affect blood flow, the autonomic nervous system, etc. They found that about 30% of ME/CFS patients in a large study (n=293) had increased levels of antibodies to adrenergic (B2) and/or muscarinic M3/M4 acetylcholine receptors (M3/M4).

That suggested that the immune systems of a significant subset of ME/CFS patients might be attacking the receptors on cells which regulate blood flow, lung functioning, muscle contractions and attention. Furthermore, the finding (a “remarkable” one they said) that the antibody levels of two receptors correlated with a host of immune factors (immunoglobulin levels, T cell activation, elevated ANA, TPO antibodies) suggested that this subset of ME/CFS patients are suffering from an autoimmune disease. Scheibenbogen has suggested that the kind of ME/CFS you have may be dependent on the kind of autoantibodies present in your system.

See Bad Bacteria, Brainstem Abnormalities and Progress with Rituximab: the Invest in ME Conference

Similar antibody findings have been found in a range of diseases (postural tachycardia, regional pain syndrome, Alzheimer’s, Sjogren’s syndrome, asthma) some of which have been associated with ME/CFS.

They also noted that immunoadsorption factors that are able to mop up these antibodies had proven to be helpful in some diseases. Two years later they put that idea to the test.

Possible Autoimmune Treatment

PLoS One. 2018 Mar 15;13(3):e0193672. doi: 10.1371/journal.pone.0193672. eCollection 2018.
Immunoadsorption to remove ß2 adrenergic receptor antibodies in Chronic Fatigue Syndrome CFS/ME.Scheibenbogen C1,2, Loebel M1, Freitag H1, Krueger A3, Bauer S1, Antelmann M1, Doehner W4, Scherbakov N4, Heidecke H5, Reinke P2,3, Volk HD1,2, Grabowski P1.

Adsorption

Adsorption vs absorption – By Daniele Pugliesi – File:Absorbimento e adsorbimento.svg, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=20486772

They used a blood purification technique called immunoadsorption to eliminate the B2 antibodies from people with ME/CFS who’d had a post-infectious onset and high B2 antibody levels. Immunoadsorption (IA) was given five times over seven days to completely wash out the antibodies. Over the next six months the participants’ symptoms, muscle strength, endothelial functioning and immune factors were watched.

Findings

Significant improvement eventually followed by a relapse was the order of the day. One patient who could barely walk prior to the treatment was able to walk several hundred yards at the end of the IA process. She completely recovered for seven weeks and then relapsed. Another patient improved enough to go back to work but then relapsed. Five patients who improved started to relapse by the end of the six months. Three patients – a good third of the study – felt significant improvements in fatigue lasting at least 12 months.

The levels of all four antibodies (B1, B2, M3 and M4) declined after the treatment in all 9 participants. These are good results which are hampered by the small sample size and lack of a placebo control. Through our experiences with Rituximab, Synergy and Mirogabalin we’ve learned how little to trust early results.  Still, research has to start somewhere and the results thus far present hope for a significant subset of ME/CFS patients.

Present and Future Work

Ramsay Award Standout

The Solve ME/CFS Initiative (SMCI) provides funding to five or so researchers every year in its Ramsay Awards. The Awards are quite competitive with SMCI receiving far more applications than it can fund, but over the past two years the Scheibenbogen group has won two – the only group to do so.

2016 Award

Citing “ample evidence of an autoimmune pathomechanism” the Scheibenbogen team will be digging into the genetics of their “autoimmune subset”. They’ll be determining if genetic abnormalities in the enzymes or transcription factor that turn on the autoimmune processes are present. They’re also analyzing the immune cells (dendritic cells, regulatory B-cells) known to produce autoimmune responses.

This is one of the first times that I’m aware of that a research group has targeted a subset and dug deeper into it.  Scheibenbogen’s focus is clearly good news for people in that subset but it’s also good news for people outside of it. If she’s found a robust subset then it needs to be peeled off from other ME/CFS patients because it’s undoubtedly confounding study results for those patients.

2017 Award

The 2017 Ramsay Award will determine if T-cells and monocytes are up to the task in ME/CFS. We know that NK and probably T-cells are laggards in ME/CFS patients’ immune systems, but other immune cells are largely untested.

Following on recent findings of impairments in energy production, the Scheibenbogen group is going to determine if T-cells and monocytes have the energy to spring into action when needed. Immune cells are mostly quiescent until they come across a pathogen, at which point they’re required to rev up their engines and explode into action. If they don’t have the energy to “explode” they’ll have difficulty fighting off bugs.

If I have it right, they’re also going to stimulate cells using adrenergic and acetylcholinergic factors to see if they affect their metabolism or energy production. Given the role these factors appear to play in the deranged stress response found in ME/CFS, finding a metabolic tie-in would be exciting indeed.

Simmaron Scheibenbogen Collaboration Underway

The Simmaron Research Foundation is also working with Dr. Scheibenbogen to identify the subset of Dr. Peterson’s patients who fit the autoimmune profile, and to further characterize the subset from a clinical perspective.

A Leader

Over the past five years Scheibenbogen has become deeply immersed in ME/CFS. She was the lead author of a paper on the EUROMENE network, which contains researchers and clinicians from 17 European countries. Euromene was accepted into the COST (Cooperation in Science and Technology) framework which was established by the European Union to support collaboration in scientific endeavors. While COST does not fund research studies, it does fund networks and provides networking possibilities across the European Union.

EUROMENE members

EUROMENE members

One goal of Euromene COST Action is to establish a “sustainable integrated network of researchers in Europe working in the field of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) and to promote cooperation between research groups.

Coordination and collaboration appears to be becoming a bigger and bigger theme. The OMF and the SMCI held collaborative and networking meetings last year. The NIH research centers are collaborating on one large project. Canada’s May Montreal conference is focusing on establishing cooperative efforts to understand ME/CFS. (Dr. Scheibenbogen will be attending.) The OMF’s next conference is set for September of this year.

However Dr. Scheibenbogen got interested in ME/CFS, it’s great to see her get so involved so quickly. She reminds me of another relatively new researcher in the field – Dr. Maureen Hanson – who quickly cranked out research studies and is now leading an NIH ME/CFS research center. It’s good to see new researchers have success in this field.

Of course, the going is still tough. In an SMCI interview Dr. Scheibenbogen seemed astonished at the lack of opportunities for research into what she described as a frequent and severe disease.

But still the situation is very disappointing with so little support for patients and research and almost no interest from pharmaceutical companies to perform clinical studies. I am a trained oncologist and hematologist and there the situation is so different with so much research and drug development.

Like everyone else in this field, Dr. Scheibenbogen is a pioneer and pioneers by definition have rough going. Like the pioneers of old she’s forging a path through some hostile territory, not as the pioneers did in the old West but this time German medical circles.  Her work is getting results, though, results that her colleagues will surely notice.  Here’s to a new presence in the field who’s put, perhaps for the first time, Germany – the most powerful nation in Europe – on the ME/CFS map.

Did a Multiple Sclerosis Study Give Us Clues About ME/CFS and Fibromyalgia?

Why should a blog focused on chronic fatigue syndrome (ME/CFS) and fibromyalgia (FM) be interested in multiple sclerosis? Because some distinct similarities exist between the three diseases, and when diseases like ME/CFS and FM aren’t getting much research, sometimes it pays to pay attention to diseases that are. You never know what insights might open up.

MS and ME/CFS

A recent study indicated that ME/CFS was more functionally disabling than multiple sclerosis

For the record, while multiple sclerosis is not as disabling as ME/CFS (yes – studies indicate that ME/CFS is more disabling than MS), MS is considered one of the most fatiguing diseases known.  (Dr. Light’s study actually found more fatigue in MS but much less post-exertional malaise ME/CFS.)

A “Fatigue” Disorder No More? – What Multiple Sclerosis Taught Us About Fatigue and Chronic Fatigue Syndrome

Additionally, MS like ME/CFS and FM, mostly strikes women in mid-life. Plus, having mononucleosis/glandular fever increases the risk of coming down with either ME/CFS or MS and one suspects, FM as well.  Infections often trigger relapses in both MS and ME/CFS. Pregnancy also often brings a respite for women with either MS or ME/CFS (often unfortunately followed by a relapse.) Central nervous system involvement is present in all three diseases. In fact, Simmaron’s spinal fluid study found similar levels of immune dysregulation in ME/CFS and multiple sclerosis.

Simmaron’s Spinal Fluid Study Finds Dramatic Differences in Chronic Fatigue Syndrome

A New Multiple Sclerosis Study Breaks Through

Proc Natl Acad Sci U S A. 2018 Feb 13;115(7):E1520-E1529. doi: 10.1073/pnas.1710401115. Epub 2018 Jan 29.Male-specific IL-33 expression regulates sex-dimorphic EAE susceptibility. Russi AE1, Ebel ME1, Yang Y1, Brown MA2.

A new MS study highlights a vital aspect of medical research – an animal model – that both chronic fatigue syndrome and fibromyalgia lack. It illuminates how researchers can use animal models to crack complex medical mysteries.  Tantalizing leads are present in both FM and ME/CFS but no one has been able to meld them into a bonafide breakthrough. That appears to have happened in MS.

Let’s see what happens in a well-studied, well-funded disease. As a bonus we’ll see that the hopeful breakthrough in MS could even have relevance to ME/CFS and FM.

One of the huge questions facing ME/CFS, fibromyalgia, MS and many autoimmune diseases is why so many more women than men get ill. Women don’t just get more autoimmune diseases, they tend to get them earlier than men and tend to have more severe cases.  No one knows why but researchers have been scratching around a possible answer for at least a decade.

The gender divide in MS has been well explored. The fact that puberty sparks an increase in MS incidence in females suggests a strong hormonal component is present.  A 2015 review agreed that sex hormones probably play a major role. Another noted that the autoimmune component of MS is greatly increased in women.

A Serendipitous Mistake Sparks a Major Finding

mouse animal study

A mistake in differentiating male from female mice led to a major discovery.

As so often happens in research, a serendipitous mistake sparked this discovery.  It began when a Northwestern University graduate student accidentally used a male mouse instead of a female mouse in an experiment. (Female mice are apparently hard to distinguish from male mice.) The researchers were using female mice to find genetic mutations that could help prevent the progression of MS – a female dominated disease.

When they ran the experiment they found, to their great surprise, that the genetic mutation that was protective in female mice actually made things worse for the male mice. (Talk about a gender divide.) Digging deeper, the team found that the genetic mutation in male mice blocked the activity of immune cells (ILC2) that are protective against multiple sclerosis in female mice. These cells halt the production of TH17 T-cells that initiate the attack on the myelin sheaths of neurons in MS.

Mast Cells Make Good

Mast cells are usually associated with allergic responses and in ME/CFS/FM with a condition called mast cell activation syndrome (MCAS) but this study revealed that mast cells can have a protective side as well.

Testosterone

A male hormone, testosterone, then reared its head.  In men testosterone triggers mast cells to produce a substance called IL-33 which stops the production of the TH17 cells in their tracks.  In fact, when the Northwestern University researchers removed the mast cells from the male mice their neurons came under attack and they developed mouse MS.  In the presence of testosterone, then, mast cells are a very nice thing to have.

testosteron

Testosterone levels could possibly could help explain the gender divide in MS as well as ME/CFS and FM.

Female mice, which have seven to eight times less testosterone than male mice, don’t produce enough testosterone to induce their mast cells to produce IL-33. Instead, female mast cells produce cytokines which increase inflammation and the TH17 T-cells that have been fingered in MS.

Testosterone has been on MS researchers’ radar for quite some time. A recent review of hormonal related changes in MS asserted that there is “compelling evidence that estrogen, progesterone, and testosterone control MS pathology by influencing immune responses and by contributing to repair mechanisms in the nervous system”.

Testosterone levels that drop as men age track with an increased incidence of MS in later life. (Interestingly the men who do get MS tend to have a tougher time with it than women.) Lower testosterone levels in men with multiple sclerosis are also associated with greater disability.  Some similar findings have been found in women. Women with MS tend to have lower testosterone levels, and increased lesions were associated with reduced testosterone levels in one study.

A very small clinical trial suggested testosterone supplementation might be able to increase white matter volume in the brains of men with MS.  If that finding is validated in larger studies, testosterone might be the first substance found that can reverse some of nervous system damage found in MS.

Testosterone, ME/CFS and FM

Testosterone levels could possibly could help explain the gender divide in MS as well as ME/CFS and FM.

A few studies have implicated testosterone in two other gender-imbalanced diseases – chronic fatigue syndrome (ME/CFS) and fibromyalgia (FM).

Two studies have found low levels of testosterone in fibromyalgia, and testosterone levels have strongly been linked to pain sensitivity in animal models. One recent study suggested that lower levels of testosterone in combination with other factors was associated with increased rates of depression and poorer sexual functioning in FM. Recently, Jarred Younger’s small “good-day, bad-day” FM study found that lower levels of two hormones, testosterone and progesterone, were associated with more severe FM symptoms.

Fibromyalgia – the Testosterone Connection

Despite concerns about the use of testosterone in women, White found that a 28 day course of testosterone gel reduced pain significantly in women with FM. (More about that later.)

In ME/CFS Broderick’s modeling efforts suggest that testosterone in men is protective.  Plus the high rate of gynecological issues in ME/CFS and fibromyalgia suggest that sex hormones are involved in ME/CFS.

High Rates of Gynecological Disorders Implicated in Chronic Fatigue Syndrome and Fibromyalgia

Sex, Autoimmunity and Chronic Fatigue Syndrome … or Why More Women Than Men Get ME/CFS

Testosterone and Autoimmunity

No one knows if ME/CFS and FM are autoimmune diseases, but both could be and the link could have something to do with testosterone. The evidence that testosterone is protective against some autoimmune diseases is building.

Adding the gut contents of male mice to female mice (another mouse model) reduced their risk of type I diabetes – an autoimmune disease. Interestingly, the protective element again appeared to be testosterone, the levels of which were highly influenced by the composition of the mice gut flora.

Declining testosterone levels in men as they age increases their risk for rheumatoid arthritis. Declining testosterone levels may also be responsible for the gender parity seen in RA by age 75, and could explain why men tend to get multiple sclerosis at a later age than women. Low androgen levels in both men and women also appear to put them at risk for autoimmune disorders.

The gender divide extends to opioid use. Regular opioid use suppresses testosterone in men but not in women.

A TH17 Connection

ME/CFS may share another connection with multiple sclerosis – a deranged TH17 response. TH17 T-cells defend against extracellular pathogens and have been found to play a significant role in the development of inflammatory and autoimmune disorders. TH17 cells appear to help initiate attack on the neuronal sheaths in MS.

Several studies from Dr. Klimas’s group suggest a TH17 associated process may be in play in ME/CFS.  Exercise provoked a Th17 response  in both ME/CFS and Gulf War Syndrome patients.  Broderick’s modeling effort found that as few as five cytokines associated with TH17 activation could identify approximately 80% of ME/CFS patients with an infectious trigger. TH17 cytokines showed up again prominently in Broderick’s network analysis study which found they functioned as “preprogrammed immune component”.

Treatment

The question now is how induce a testosterone-like response in women without actually using testosterone. Drug studies suggest that testosterone can be helpful in MS but the study authors stated that women can’t take much of it without becoming masculinized and experiencing other significant side effects.

Instead this new MS study’s importance lies in the discovery of a key cytokine (IL-33) that can apparently turn off the destructive nerve processes in MS and even restore the nerves. If researchers can develop a way to promote IL-33 activity without using testosterone in women, they may have gotten a handle not just on MS but possibly on other gender imbalanced autoimmune diseases as well.

A New Approach to Autoimmunity?

The authors were quick to suggest that the findings may apply to other autoimmune diseases as well and could ultimately signal an entirely new approach to them. That’s welcome news given the harsh side effects of many of the immune suppressants used in autoimmune diseases.

“This suggests a mechanism for the reduced incidence of multiple sclerosis and other autoimmune diseases in males compared to females. These findings could lead to an entirely new kind of therapy for MS, which we greatly need.” Melissa Brown, PhD.

Perhaps it will lead to new direction in research for ME/CFS or FM.

Climbing Our Everests: Beck Weathers, His Fight for Survival and ME/CFS

February 12, 2018

The temperature was dropping that December night as I pulled the van into the Ritz Carlton in Incline Village.  Sitting about 6500 ft high a couple of miles from Lake Tahoe, I shivered as I remembered the forecast – temperatures in the 20’s with snow on the way. This was not a camping night – tonight I was going to hide out in a hotel.

Beck Weathers Everest story

Weathers’ struggle for survival on Mt Everest has inspired many. His struggle pales, though, compared to what many people with ME/CFS have to endure every day.

Beck Weathers, the speaker at Simmaron Research Foundation’s Donor Appreciation night, probably would have laughed. Weather was there to talk about what his remarkable escape from 29,000 ft. Mt Everest – a gripping survival story which formed the basis for 2015 film Everest – had taught him.

Beck Weathers charged into the Ritz like a storm slamming down the slopes of Everest. It’s been over 20 years since Weathers almost lost his life during the ill-fated Everest expedition that claimed nine lives, but for Weathers, it seemed like it was yesterday as he brought each of us up onto the mountain with him.

Weathers’ wife said Weathers could talk the ears off a rubber rabbit and I believe it. The man is a natural storyteller.  Those in the packed ballroom were in for a treat. I don’t know if I’ve ever heard a more evocative story.

Sound effects (wind whirling, ice crunching) were in abundance as Weathers’ voice rose and fell as he brought the fear, the exhaustion, the determination, the beauty, the failures and the triumphs of that expedition to the Simmaron Research Foundation gala dinner. It was an incredible performance.

weathers mitt

Multiple operations formed Weathers left had into what he calls his mitt.

The scars were there, too. The missing tip of Weathers’ nose (doctors grew a new one on his forehead) and one missing and another mangled hand demonstrated the price Weathers paid for his time on the mountain.

Weathers was forty-nine at the time, an experienced amateur climber who’d summitted eight major mountains, but nothing left him prepared for what would happen on that May day in 1996. Of all the extraordinary stories to come out of that climb (read “Into Thin Air” and see “Everest“), his was the most remarkable.

Partially blind, Weathers and other climbers were caught by a sudden blizzard in the “Death Zone” above 26,000 feet on the slopes of Mount Everest.  In his book, “Left for Dead”, Weathers described what happened.

“Suddenly, the blizzard detonated all around us. It crescendoed into a deafening roar. A thick wall of clouds boiled across the South Col, wrapping us in white, blotting out every discernible feature…It quickly became incredibly cold.”

As the wind suddenly rose to 70 knots and the temperatures dropped to minus 60 degrees Fahrenheit, the group struggled to survive, almost plunging off a 7,000 foot drop. A decision was made that the strongest two would try to make their way to camp.  Weathers and others stayed on the Col and huddled together.

That night, a Russian climber took three more of the group down. Weathers and a Japanese climber – each in a hypothermic coma – remained. The next morning, after the storm cleared, a cardiologist determined that Weathers was too close to death to be moved: anyone caught in a hypothermic coma that high on a mountain is going to die. The cardiologist returned to camp alone.

Dead Man Walking

Late that afternoon, however, Weathers woke to see his gray, frozen, gloveless hand. Bouncing it like a block of wood off the ice somehow revived him.

Weathers hadn’t eaten for three days or had any water for two. His oxygen was long gone. By all rights, after lying in a blizzard at 26,000 feet with no sleeping bag or tent, one glove (and one hand and arm) gone, Weathers should have succumbed long ago. He’d already been pronounced and left for dead twice.

But Weathers was alive. Watching the sun begin to set, he estimated he had an hour to find camp or die. It would have been easier to slide into the cozy hypothermic coma he’d been in yesterday.  Weathers could feel it tugging at him, but then something got him up and moving.

Oddly enough, it was pictures of his wife and children. Weathers had basically ditched his family in order to climb mountains.  His wife was about to divorce him and his relationship with his kids – who rarely saw him – “extremely strained”. Weathers’ obsession with work, fitness and mountaineering  had left little time for his family. It was as if they didn’t exist. He could disappear for weeks on an expedition – leaving them fretting – without bothering to contact them.

Yet, as he prepared himself to face a probable death, it wasn’t his work, his many awards, nor his mountain-climbing experiences that came to mind; it was the family he’d left behind.

Weathers was a pathologist with a dark secret. He’d struggled with sometimes severe depression for years. His obsessions with work, fitness and mountain climbing were in some ways simply attempts to escape his depression.

Weathers struggled up, and half-blind, picked a general direction and somehow stumbled, slid, and fell his way into camp where he was put into a tent, shoved into two sleeping bags with hot water bottles – and again pronounced dead.  That night, another storm blew up, filled the tent with snow, and blasted Weathers out of his sleeping bag. He was found lying in the snow the next morning.

Weathers Beck

Weather’s lower right arm and hand were amputated. He asserts that the life-altering realizations that occurred on the Everest climb were worth the physical cost.

The next morning, Weathers was guided by three other climbers down to 20,000 feet, where he was effectively stuck. He was too ill to get further down the mountain and he was still too high for a helicopter rescue.  But then, another miracle happened. A daring Pakistani pilot risked his life for a man from another country and religion – and succeeded.

Weathers ended up losing part of his nose, his right hand and lower arm, part of his left hand and several toes to frostbite, but he survived, and he was there to tell the crowd at the Simmaron event that the ordeal was worth it.  The loss of his hands, he said, was a small price to pay for getting back his relationship with his family.

What might a story of survival against all odds on the tallest mountain in the world have to say to people with ME/CFS/FM?

Keeping On Keeping on

Weathers never should have woken up. Then partially blind, hypothermic, etc., by all odds he shouldn’t have made it to camp.  He had only a vague idea of where it was. Daylight was quickly running out. His eye problems left him slipping, sliding and falling constantly. He’d lost 30 pounds and was at the end of his rope physiologically.  He had no roadmap – no decent expectation that he could survive.  He simply knew that in order to have a chance of survival, he had to keep walking.

Just as with Weathers, roadmaps for ME/CFS/FM do not exist. Each person’s journey is unique, full of slips and slides, wrong pathways, muddled ideas, mistakes and occasionally victories.  All you can do is to be resolved, in the face of everything, to keep “walking”, to keep being informed, to keep participating.  Some people do stumble their way into “camp” (health).

The task, though, is far harder for many ME/CFS/FM patients than for Weathers. Beck got off his mountain but many people with ME/CFS and FM, in pain and bed or homebound, live day in and day out, stuck on their own Everests. Beck’s exploits, as inspiring as they are, pale next to the sheer courage and determination it takes many people with ME/CFS/FM for years or even decades – to keep on keeping on.

Just like Beck, without having any idea how they are going to succeed, they keep putting one foot (so to speak) in front of the other.

There’s just no substitute for keeping on.  When Weathers got down to 20,000 feet and his wife was told he was still going to die, his wife kept on. Without knowing how she was going to get Weathers off the tallest mountain in the world, she shared his story with everyone she could think of. She told Beck’s story long enough and well enough until it filtered down to one very brave Pakistani pilot.

Through movies, TED talks, videos, blogs and person-to-person interactions, people with ME/CFS are telling their stories – and moving people. There are “helicopter pilots” out there – brave women and men we don’t know about yet (like Pine of the Pineapple Fund) who will be moved to act.  All we need to do is keep sharing.

Keeping on – no matter how high the mountain or how treacherous the climb – is the critical element for success.

 

 

Conclusion

Weathers’ story was incredibly inspiring. Like many people with ME/CFS/FM, the medical profession gave up on him, and in fact, signed off on his death warrant.  Against all odds, though, Weathers was able to survive.

Weathers’ story indicates miracles do happen at times, that serendipity can strike, that helicopters can appear out of the mist at 20,000 feet. Unforeseen discoveries and assistance (the Pineapple Fund’s $5 million donation to the OMF) can happen. We should never discount the possibilities of miracles happening.

Although Weathers got off his mountain, most of us remain on ours. We have our Everests to deal with. Some of Weathers’ realizations while on the mountain could help make our way easier.

There was the critical need to keep putting one foot in front of the other – to stay in the game, so to speak, and not give up even when all is black. Beck shouldn’t have survived, but miracles – unexpected events – showed up. You never know what the future will bring.

There was the need to take responsibility for the mistakes he’d made in his relationships. Finally, there was realization of how empty striving to be a success was for him.

For people with ME/CFS/FM, we can take our own brand of inspiration from Weathers’ survival and his reevaluation of what kept him going on his mountain.

Simmaron gives special thanks to the donor who made Weathers’ talk possible, and to every one of our donors who make our efforts to help get ME/CFS/FM patients off of their mountains possible.

Check out a video clip from Weather’s talk

Check out more insights gained from Weather’s talk on the hollowness of success and the importance of relationships in Climbing Our Everests II: Beck Weathers, Relationships, the Success Trap and ME/CFS

NEID Disease? Study Suggests Neuro, Endocrine and Immune Systems Work Together to Produce ME/CFS

Bruun Wyller continues to surprise. When last heard from this erstwhile cognitive behavioral therapy (CBT) proponent asserted that more research into Epstein-Barr virus in chronic fatigue syndrome (ME/CFS) was needed. Now he’s looking at the interaction between the immune and endocrine systems.

The Evolution of a Chronic Fatigue Syndrome (ME/CFS) Researcher? CBT Proponent Calls for More Herpesvirus Research

Transforming growth factor beta (TGF-β) in adolescent chronic fatigue syndrome Vegard Bruun Wyller1,2*, Chinh Bkrong Nguyen1, Judith Anita Ludviksen3,4 and Tom Eirik Mollnes. J Transl Med (2017) 15:245 https://doi.org/10.1186/s12967-017-1350-

Wyller begins his new study reporting that systemic inflammation is probably present and B-cell functioning is impaired (if modestly) in ME/CFS, but that the picture regarding cytokines is muddier. A meta-analysis of 38 ME/CFS cytokine studies examining 77 cytokines found only one standout – a cytokine called TGF-B. It was consistently elevated in 2/3rds of the studies.

cytokines chronic fatigue syndrome

Only one cytokine has more or less consistently shown up elevated in ME/CFS studies – TGF-B

Given its unusual and consistent appearance in cytokine study results, why TGF-B has gotten so little attention in ME/CFS is unclear. The fact that it’s kind of a weird cytokine probably doesn’t help. Secreted by macrophages and some other immune cells, TGF-B can function as both an anti and pro-inflammatory cytokine depending on the situation it’s in.

It’s three forms are involved in a multitude of regulatory processes involving inflammation and immunity.  It does more than participate in the immune system; TGF-B also affects or is affected by the two stress response systems in our bodies – the HPA axis and autonomic nervous system. All that makes TGF-B a complex character indeed.

Take our two stress response systems. During stressful situations increased TGF-B levels appear to be associated with increased levels of cortisol – the main stress hormone of the HPA axis.  An ME/CFS study examining the gene expression of immune cells found an abnormally high expression of genes that interact with the HPA axis and autonomic nervous system. That suggested that a significant immune-hormone component is present. Indeed, ME/CFS has long been characterized as a neuroendocrineimmune (NEID) – a disease that effects all three systems.

In this study Wyller, a Norwegian researcher, again used his own broad definition of ME/CFS to find patients, but this time he did post hoc analyses using the Fukuda and Canadian Consensus criteria to determine if different definitions of ME/CFS made a difference – they didn’t). As always, Wyller studied adolescents – a lot of them (n=120) and 68 controls to produce a very nice sized study. The data analysis took a long time; the data itself was collected from 2010-2012.

TGF-B actually comes in three forms ((TGF‑β1, TGF‑β2 and TGF‑β3). For the first time ever in ME/CFS Wyller tested for all three forms of TGF-B, as well as norepinephrine, epinephrine and cortisol (urine) and c-reactive protein (serum).   He also assessed heart rate variability, and in 29 patients examined their whole blood gene expression.  Questionnaires assessing fatigue, inflammatory symptoms, post-exertional malaise, sleep, mood and anxiety were also given.

Results

Wyller expected TGF-B levels to be higher in his adolescent ME/CFS patients, but to his surprise even using the CCC and Fukuda criterias, they were not. Nor was TGF-B associated with any clinical markers such as fatigue, PEM, sleep problems, etc.

cortisol

Wyller suggests an unusual neuroimmune connection involving TGF-beta and stress hormones such as cortisol (pictured) may be present

The study was looking like a bust until Wyller dug a little deeper. It turned out that TGF-B levels were associated with increased levels of the stress hormones cortisol, norepinephrine and epinephrine in the ME/CFS patients but not in the healthy controls.

An unusual immune-endocrine interaction was occurring in ME/CFS patients that was not found in the healthy controls. For some reason, TGF-B  levels rose in conjuction with stress hormones in the ME/CFS patients but not in the healthy controls.  All three TGF-B isoform displayed this association.

Plus that association also correlated with symptom severity. Wyller found that the TGF-B-cortisol-autonomic nervous system correlation was strongest in the most fatigued ME/CFS patients.  Less fatigued ME/CFS patients, on the other hand, had much less of this association.

Once again, context appeared to be king in the ME/CFS patients. The levels of TGF-B didn’t matter but the network they were embedded in did. A similar scenario showed up in the huge cytokine study conducted by Dr. Montoya and Mark Davis of Stanford. That study, like Wyller’s, didn’t find high levels of cytokines, but it did find that even normal cytokine levels affected symptoms. That suggested some sort of immune hypersensitivity, perhaps associated with some unusual network functioning, was present.

Now Wyller apparently finds an immune and autonomic nervous sensitivity to TGF-B. It’s not the cytokine levels themselves but the effect they have on stress hormones.  Indeed, Wyller suggested that the primary disease mechanism in ME/CFS is not altered immune production but altered immune control. Somehow the immune system is affecting other systems in unusual ways.

That’s an intriguing idea given what we’ll shortly see from Dr. Klimas, whose intense testing during exercise suggests that exercise induced immune activity trips off autonomic nervous system problems in ME/CFS. Gordon Broderick’s network studies suggest that cytokine levels don’t need to be high to have untoward effects on ME/CFS patients – they simply have to be embedded in an unusual immune network.

Wyller - neuro-endocrine-immune disease

Wyller believes a complex neuro-endocrine-immune interaction may be contributing to the fatigue and possibly the EBV issues in ME/CFS.

Dr. Klimas will be trying in a series of small studies to move those systems back to normal this year. (More on that later.)

Wyller’s findings suggest that his “sustained arousal” hypothesis may be correct and that the “sustained arousal” he believes is present in ME/CFS is being triggered by the immune system. His small gene expression study possibly bares this out. Wyller warned about reading too much into the gene expression analysis because of the small sample size (n=29). The analysis found, though, that the TGF-B3 isoform was negatively associated with reduced expression of two B-cell genes (TNFRSF13C and CXCR5).

Wyller suggested that TGF-B3 may be altering the effect that cortisol – the master immune regulator – has on B-cell genes in ME/CFS.  If TGF-B and cortisol combine to smack B-cell genes in ME/CFS, Wyller suggests that could translate into problems reining in Epstein-Barr virus (EBV) – a common trigger in ME/CFS.  Wyller’s earlier gene expression study, in fact, suggested that B-cell problems could be the key to the EBV problems seen in ME/CFS. Now Wyller suggests that these B-cell problems could result from a complex interaction between TGF-B and cortisol.

Wyller’s going to check out that interaction in a study which will determine how effectively the B-cells in ME/CFS patients respond to EBV in the presence of neuroendocrine hormones. If cortisol or other neuroendocrine hormones impair the ability of B-cells to whack EBV in ME/CFS, Wyller may have uncovered one reason why mononucleosis is such a common trigger for ME/CFS.

Mold Connection?

Wyller’s focus on the research literature apparently precluded him from exploring another TGF-B angle. Mold has become a hot if little studied topic in ME/CFS. For over a decade, mold doctor Ritchie Shoemaker has asserted that elevated TGF-B levels play a major role in mold related illnesses.  Instead of B-cells, though, Shoemaker ties TGF-B issues to T cell problems and reduced blood flow in the capillaries, which translate into reduced oxygen uptake and problems with producing energy in the mitochondria – a key theme in ME/CFS.

Shoemaker, interestingly, asserts those blood flow and immune problems mirror what is happening in sepsis. In fact, Shoemaker believes that the chronic inflammatory response syndrome (CIRS) he sees in his patients is a chronic form of sepsis. Over ten years ago ME/CFS specialist Dr. David Bell proposed a chronic form of sepsis exists in ME/CFS as well.

Could Chronic Fatigue Syndrome (ME/CFS) Be a Chronic Form of Sepsis?

 

Could Chronic Fatigue Syndrome (ME/CFS) Be a Chronic Form of Sepsis?

“In this monograph I would like to explore the concept of neuro-immune fatigue as a metabolic illness resulting from a series of events beginning with an infection, toxic exposure or neurologic injury.” Dr. David Bell, 2007

This is one of a series of blogs highlighting hypotheses mostly written by doctors or other professionals with ME/CFS, or in this case, doctors who have cared for them. The hypothesis examined in this case: Dr. Bell’s idea, produced in his monograph, “Cellular Hypoxia and Neuro-immune Fatigue”, that chronic fatigue syndrome (ME/CFS) could be a kind of “slow sepsis”.

Bell’s “Cellular Hypoxia” book was published in 2007, long before he was probably acquainted with Dr. Naviaux’s and others’ work and before the recent explosion of interest in cellular energy production in ME/CFS. Naviaux and others would probably smile, though, at Bell’s prediction that with ME/CFS and other diseases, “we may be witnessing the emergence of the next era of medicine: the diagnosis and treatment of cellular metabolic diseases”.

Sepsis is a life-threatening response to infection or trauma that can lead to tissue damage, organ failure, and death. In some ways, sepsis sounds similar to autoimmunity. For reasons the medical profession does not understand, sepsis begins when the immune system resets itself, stops fighting pathogens, and turns on the body.

The results are often devastating. The near complete body breakdown that results makes sepsis the most expensive disease hospitals treat.  Forty percent of patients with severe sepsis do not survive.

Chronic Fatigue Syndrome (ME/CFS) – A Mild but Chronic State of Septic Shock?

ME/CFS is obviously not sepsis, but it does share some interesting characteristics.  With his “cellular hypoxia” monograph published in 2007, Dr. David Bell suggested that people with ME/CFS may exist in a “mild, but chronic state of septic shock”. Bell came to this conclusion after finding that sepsis and ME/CFS produces what he believed is a similar kind of oxygen dysfunction. In sepsis and in ME/CFS, Dr. Bell notes that oxygen is actually abundant: it’s abundant in the air, the lungs and the blood of ME/CFS patients, but it’s just not getting taken up by the tissues.

Bell reports that in septic shock, the following events occur (note the last one):

  • a serious infection occurs which –
  • results in the production of cytokines which –
  • increases nitric oxide levels which then –
  • interfere with the production of cellular energy.

Bell noted that when nitric oxide blocks the flow of oxygen in severe septic shock, a patient can still die despite doctors giving him/her as much blood and oxygen as they need.

Bell suggests a similar process to sepsis occurs more gradually in ME/CFS. First, an initiating infection or toxic exposure triggers the immune system to produce pro-inflammatory cytokines and nitric oxide (NO). From there, NO increases peroxynitrite and superoxide (Martin Pall’s hypothesis), which causes oxidative stress and interferes with mitochondrial function.

Ultimately, the cell becomes hypoxic (oxygen-starved), and neuropathies and autoimmune and other problems develop.

The idea that impaired oxygen intake might be limiting energy production has gained some currency since Bell wrote his monograph.  Vermoulen’s exercise studies suggest that impaired oxygen intake, not mitochondrial problems, is the key issue in energy generation. The early stages of Ron Davis’s collaboration with an San Jose State University bio-engineer suggest that the red blood cells may have difficulty getting to the tissues. Other researchers have found autoantibodies to receptors that open and close the blood vessels in a subset of ME/CFS patients.

Last year, Chris Armstrong in, The “Starvation” Disease? Metabolomics Meets Chronic Fatigue Syndrome Down Under“, took the sepsis/ME/CFS notion one step further when he noted that many of the metabolomic anomalies (reduced amino acids, reduced lipids and increased glucose levels) found in ME/CFS are also found in sepsis and starvation.

Remarking that during sepsis, immune cells rely entirely on glycolysis to proliferate, Armstrong speculated, much as Bell did years earlier, that an infection or autoimmune process might have triggered a sepsis-like condition which lead to a state of chronic metabolic starvation.

A last tie to sepsis is an incidental one.  Ron Davis and Ron Tompkins of the Open Medicine Foundation worked on sepsis together. Based on his work there, Davis has said ME/CFS could be a kind of atypical sepsis.

Two Vascular Diseases?

blood vessels

Blood vessel damage could play a central role in both sepsis and ME/CFS

Bell noted that a vasculopathy – inflammation of the blood vessels – was the first symptom (reddened cheeks) he noticed in ME/CFS.  (That suggested to him that a parvovirus may have swept through his area.)

Cardiovascular issues could be central in both diseases. Perhaps the most interesting possible intersection between sepsis and ME/CFS occurs in the blood vessels – specifically the small blood vessels.

Recently an NIH Panel redefined sepsis as: “severe endothelial (blood vessel) dysfunction syndrome in response to intravascular and extravascular infections causing reversible or irreversible injury to the microcirculation responsible for multiple organ failure”; i.e. at its heart, sepsis is a small blood vessel disease caused by a pathogen attack – which is complicated by the immune storms that follow.

Sepsis has also been called a “malignant intravascular inflammation” characterized by excessive coagulation which blocks blood flows to the small blood vessels, reducing blood volume and lowering blood pressure.

Indeed, as Bell points out several times in his monograph, vascular issues show up again and again in ME/CFS, POTS, orthostatic intolerance and similar, related diseases.

Blood Pressure

Altered blood pressure is another sign of cardiovascular issues in both diseases. A sudden drop in blood pressure associated with an infection is an indication that sepsis has begun.

Blood pressure regulation problems are found in ME/CFS but anecdotal reports suggest that declines in blood pressure may be common as well.  Bell writes that most, but not all, people with ME/CFS have low blood pressure – something that the medical profession has little interest in – unless you’re in the ICU.  It’s ironic, Bell notes, that an ME/CFS patient with a blood pressure 75/40 will get little notice but put someone with that blood pressure in an intensive care unit and the sirens will go off.

Blood Volume

Low blood volume is common in sepsis and great efforts are made to increase it. Low blood volume, of course, is very common in ME/CFS as well. Sometimes blood volume is so low in ME/CFS as to stagger the mind, yet it’s received little attention.

Increasing blood volume can, of course, be helpful in ME/CFS, but is not as helpful as one would think, given the low blood volumes found. (Could microcirculatory problems be to blame?)

Blood Flows

In sepsis, blood flows in the microcirculation become so low as to damage the organs. That doesn’t appear to happen in ME/CFS, but even back in 2007, Bell was able to point out studies showing reduced blood flows to the brain and muscles was present.

Pathogen Damage

Sepsis was long thought to result from an overwhelming immune response to an infection but that’s no longer thought to be true. In 2010, however, that changed. The Working Group on Blood Systems Response to Sepsis, convened by the NIH’s National Heart Lung and Blood Institute (NHLBI), concluded that a cytokine cascade was not, as had been previously believed, the main culprit. The real issue in sepsis, they asserted, is damage to the blood vessels caused by an uncontrolled infection.

The damage is then exacerbated by many inflammatory factors (including Dr. Bell’s nitric oxide metabolites).  A period of reduced immune activation or “immuno-paralysis” (caused by an overactive anti-inflammatory response/immune exhaustion) that follows then sets the stage for the reactivation of latent viruses such as EBV, HSV-1 and others which amplify the damage.

The immune response is still recognized to be important, particularly in the later stages of the disease, but the infections themselves and the damage they do mayt be the key factor.

That’s an intriguing finding given that the biggest factor in determining who gets ME/CFS and who doesn’t after an infection appears to be the severity of the initial infection. Could a severe infection kick off a low-grade, chronic type of sepsis in ME/CFS?

It’s possible that the difficulty NK cells – and probably T-cells – have in killing off pathogens in ME/CFS might just give those pathogens enough time to damage the blood vessels.  Or, perhaps in other cases, an autoimmune process is sparked which does the same. (An autoimmune process appears to occur in some types of POTS).

Post-Sepsis Syndrome (PSS)

Interestingly, sepsis appears to be another potential trigger for chronic fatigue syndrome (ME/CFS). Post-sepsis syndrome (PSS) – a condition occurring in about 50% of sepsis survivors – indicates that surviving sepsis – perhaps like surviving the infection, injury or whatever that appears to trigger the onset of ME/CFS – is often not nearly the end of the story.

Extreme fatigue, problems with cognition, muscle and joint pains, insomnia and other sleep problems, that can last months or even years are common outcomes of sepsis.  In fact, a sepsis trust has produced a support document specifically for post-sepsis patients experiencing “chronic fatigue“.

The medical profession has been content thus far to simply to document the extent of PSS – with little attempt to understand or treat it.  The causes of the fatigue and chronic pain in PSS are completely unknown. This is despite the fact that several studies have made clear that PSS is a significant and enduring problem: statistics suggest that about 250,000 people a year come down with PSS.

The disease is clearly pathophysiological, but the only help The Sepsis Alliance could provide for the many chronically ill survivors was to get emotional and psychological support (counseling, cognitive behavioral therapy or neuropsychiatric assessment) or physical therapies.

Treatment

Sepsis is also confusing to treat. The first line of defense is a hearty dose of antivirals, fluid support, etc.  From there it gets trickier.  People with sepsis may have a pro-inflammatory phase followed by immune suppression (or both may be occurring at the same time).  (Could ME/CFS be a kind of drawn-out sepsis with a longer pro-inflammatory phase followed by immune exhaustion?)

Researchers and doctors focused on reducing pro-inflammatory responses, but drug trials targeting the pro-inflammatory response have been ineffective.  Now, researchers are targeting immune checkpoints in hopes of unleashing the power of the innate immune system.

Check out a more technical take on sepsis and ME/CFS which brings Systemic Inflammatory Response Syndrome (SIRS) into the equation: IS SIRS, CARS, MARS – AND NOW PICS – CAUSING THE “CHAOS” IN ME/CFS?

Conclusion

dr. david bell

Dr. David Bell

Chronic fatigue syndrome (ME/CFS) is not sepsis but the two diseases do share some intriguing characteristics. Both sepsis and ME/CFS often start with an infection; oxygen delivery to the tissues appears to be a problem; blood pressure, blood volume and blood flows are affected, and sepsis often results in a syndrome that symptomatically looks very much like ME/CFS.

As Roberts points out what’s happening in the very, very complex disease known as sepsis is still unclear. Whether or not the new drugs being developed for sepsis will play a role in ME/CFS is, of course, unknown as well. Drugs being developed to turn off the anti-inflammatory response are intriguing given the state of “immune exhaustion” that some studies have found in ME/CFS.  If ME/CFS does turn out to be a kind of “slow sepsis” it will be a good idea to keep an eye on the developments there.

Stevens, in fact, suggests that the ME/CFS and sepsis communities stay in close touch.

It seems logical that the ME/CFS community should begin to share knowledge and resource with the sepsis organizations such as International Sepsis Forum (ISF), Global Sepsis Alliance and Sepsis Trust and Post Sepsis Syndrome patients. The curative challenges ahead are monumental, involving complex pathways which have yet to be researched, and will no doubt result in individualized treatments.

Simmaron Patient Day Part II: The Hanson Report

Maureen Hanson has been making waves.  An ace molecular plant biologist prior to entering the chronic fatigue syndrome (ME/CFS) field, Hanson has worked on mitochondrial and gene studies in plants dating back decades. Now, with her son ill from ME/CFS, she’s turned her talents to this field, and has made a difference in a hurry.

A trusted researcher, Hanson scored one of the few XMRV grants and in a short period of time has produced studies on the gut, mitochondrial DNA, exercise, and metabolomics in ME/CFS. Last year, Hanson, created one the few chronic fatigue syndrome (ME/CFS) research centers in the U.S. (the Cornell Center for Ennervating NeuroImmune Disease, ) and this year she and her colleagues received one of the three NIH ME/CFS Research Center grants. She’s also a member of the Simmaron Research Foundation’s Scientific Advisory Board.

Last year Hanson was awarded a smaller NIH grant (R21) to do preliminary work assessing the energy production in ME/CFS patients’ immune cells using the Seahorse XF Analyzer.  In this blog we take a closer look at the work underway.

A Breakthrough Technology

It’s safe to say that the Seahorse machine is changing how researchers do research. In the mid-2000s the Seahorse folks introduced something new to the medical world called “extracellular flux (XF)” technology. A monolayer of cells is placed in a very small, 10 ml sensor chamber and then stimulated.  Every few seconds a sensor placed 200 microns above the cell monolayer takes a measurement.  Where past techniques required hours to assess oxygen metabolism, the Seahorse can do it in minutes.

This technology allows researchers to determine the energy consumption of cells by analyzing changes in oxygen and acid levels occurring in the media outside of them.  The amount of oxygen present indicates how much energy is being produced through glycolysis and by the mitochondria.

The ability to place energy stimulating or inhibiting or other drugs in the sensor chamber brings the possibilities of the Seahorse machine to an entirely new level. If the inability to produce energy turns out to be a key factor in ME/CFS, the Seahorse machine’s ability to test how drugs and other substances effect the energy production of cells could be a big boon indeed

Agilent, the company that produces the Seahorse machine, reports the machine has been used in over 250 studies. HIV researchers, for instance, recently used the machine to determine the effectiveness of the immune response in HIV patients. It turns out that in order to meet a threat, many of our immune cells undergo a huge metabolic shift as they get transformed from a resting to an active state. That shift coincides with large increases in glycolysis in particular.

A similar approach is being used in chronic fatigue syndrome (ME/CFS). Tomas’ recent Seahorse study suggested that ME/CFS patients’ immune cells (PBMC’s (T, B and NK cells, monocytes))are having severe problems producing energy. Tomas’ study opened up an important possibility but it was limited by its inability to determine which cells were having problems.

https://www.healthrising.org/blog/2017/11/11/cellular-energy-hit-chronic-fatigue-study/

Hanson is taking the next step in assessing immune functioning in ME/CFS with her R21 NIH grant. That grant gave her the funds to assess the energy production of individual immune cells separately (T, B and NK cells).  (Isabel Barao is also examining energy production in NK cells).

Each of these cell types has been potentially implicated in ME/CFS. The T-cell problems Derya Unutmaz of Jackson Labs saw are what attracted him to ME/CFS, and Mark Davis of Stanford recently found signs of unusual clonal expansion in ME/CFS patients’ T-cells.  The success some ME/CFS patients have with Rituximab suggests B-cell issues are present, and the problems ME/CFS patients’ natural killer cells have with killing have been known for decades.

T-cells are a particularly good subject because springing into action to kill other cells or to produce clones of themselves to fight invaders requires enormous amounts of energy. If energy production is flawed in ME/CFS, it’s probably going to show up in patients’ immune cells.

Glycolysis OK

Metabolomic studies suggest glycolysis might be inhibited in ME/CFS, but at the OMF’s Stanford Symposium Hanson stated that she hasn’t found impaired glycolysis. When glucose was given to the immune cells to stimulate their glycolytic processes, the cells were able to use it, but their respiratory capacity (oxidative phosphorylation) was blunted.

In another study, which the SMCI helped to fund, Hanson’s Metabolon metabolomics study found lower glucose levels (a surprise) as well as differences in fat and lipid metabolism (i.e. energy production), and in the sphingolipids that play a big role in Naviaux’s findings.

Hanson noted that low glucose levels are not a good sign, either. Low glucose levels have been associated with increased cortisol responses (possibly leading to exhaustion) and inflammation. Plus they may be able to mess with a person’s endurance.

The last sport anyone with ME/CFS is going to engage in is an endurance race.  That might make sense given that athletes with lower glucose levels tend to do worse in endurance sports. Overall Hanson’s metabolite findings suggest increased inflammation and reduced recovery from metabolic stress are part and parcel of ME/CFS. Metabolic stress, of course, is exactly what she’s measuring in her Seahorse study.

Hanson’s finding of normal glycolysis in ME/CFS patients’ T-cells mirrors the findings of Tomas’ recent Seahorse study. However, Hanson’s early findings are suggesting that, at least in the immune cells, the mitochondria are the issue.

Hanson has found that ME/CFS patients’ T-cells use less of their “respiratory capacity” when provoked than do healthy controls’ cells. If I’m reading this right, the capacity to produce energy is there, but it’s not being used.  The next step is to determine if the T-cells, when they become activated, can produce enough energy to be effective. If Dr. Hanson finds they’re not up to the task of producing adequate energy, she said, “they may also be unable to effectively respond to an immune challenge.”

Lethargic T-cells could have major implications for the immune system, as T-cells are important in just about every immune system activity. At least four different kinds of T-cells exist:  T-helper cells activate B and NK cells, T-killer cells destroy virally infected and cancerous cells, T-memory cells alert the immune system to danger, and T-regulatory cells help keep the immune system humming.  Small studies suggest that cytotoxic or killer T-cells have the same problems with killing infected cells that NK cells do.

Whether or not something in ME/CFS patients’ blood is essentially putting their cells to sleep is one of the more fascinating questions facing this field. Several researchers including Ron Davis of the Open Medicine Foundation and Fluge and Mella in Norway believe something in the blood is doing just that. Energy production issues in ME/CFS patients’ cells that have been isolated from the blood suggest that something may be wrong with the cells themselves. It’s possible, therefore, that problems may lie in both the blood and the cells.

Since the Seahorse machine allows researchers to insert different substances in the medium the cells are bathed in, I asked Dr. Hanson if she could use the machine to determine the effects ME/CFS patients’ blood may be having on their immune cells.

Dr. Hanson replied that the Seahorse machine could determine if something in ME/CFS patients’ serum affects mitochondrial function in immune cells from healthy people, but the Seahorse technology would not be able to tease out what factors in the serum are responsible.

The Seahorse requires large samples of difficult to obtain immune cells. T-cells are relatively easy to obtain; B and NK cells – not so much.  Getting Maureen Hanson the resources she needs to do her work is where the Simmaron Research Foundation comes in: it’s supplying the cells she needs to do her work.  Dr. Hanson stated that, “We are grateful to Simmaron Research for supporting the collection of additional samples from which individual cell types— such as B and NK cells—can be purified for analysis of glycolysis and oxidative phosphorylation”.

Next up, Dr Hanson will analyze the cellular energetics of those NK and B cells. Despite the Rituximab failure, B-cells are still of great interest in chronic fatigue syndrome (ME/CFS). It’s still possible, for instance, that the drug works for a significant subset of patients. Plus B-cells are heavily involved in autoimmunity. Dr. Light has proposed that energy depleted B-cells may increase the risk of an autoimmune process beginning.

The desire to examine NK cells is obvious. Reduced NK cell cytotoxicity is a hallmark of ME/CFS, and reduced cytotoxicity of T-cells appears to be present as well. Could that poor killing power be caused by the most basic of all problems – the inability to generate enough energy? Given the high energy requirements of activated immune cells, that’s a distinct possibility. Dr. Hanson’s work will take us closer than any other yet to answering that most fundamental of all questions.