All posts in Pathogens

Researchers Closing in on Definitive Lyme Tests As NIH Amps Up Lyme Efforts

It wasn’t until 1983 that Borrelia burgdorfii, a bacteria carried by the black-legged or deer ticks, was identified as the cause of Lyme disease. That didn’t mean a good diagnostic test has been available – far from it.

None of the currently available tests (PCR, antibodies) are anything near definitive. PCR tests often fail when they simply miss the low numbers of bacteria present. The most commonly used tests, antibody tests, on the other hand, don’t begin to be accurate until a month or more into the disease.

That’s not a good scenario for a person bitten by a tick who needs a quick regimen of antibiotics to ward off the potential joint, connective tissue, heart and nervous system complications that can occur, 20-30% of whom never get the infamous Lyme rash. Public health authorities estimate that as many 300,000 people are exposed to Lyme disease every year – but only 30,000 cases are reported.

Lyme disease

Lyme disease has been a scourge for decades, but doctors still use tests developed in the 1990’s.

The current tests are so problematic that health officials in areas with high rates of Lyme disease often simply provide prophylactic doses of antibiotics to anyone exposed to a tick who comes down with a fever, headache, etc.

Plus people who remain ill after treatment, or who are diagnosed using controversial tests, can be given long term courses of antibiotics long term which carry their own risks. The number one thing that’s wanted and needed in the Lyme world is an effective diagnostic test. The good news is that one may be on the horizon.

The current slate of antibody tests were agreed upon back in 1993 at the Dearborn Conference when our understanding of Lyme disease was in its infancy. Twenty three years later, experts experienced in the clinical and laboratory aspects of Lyme and other infectious diseases met at the Cold Spring Harbor to discuss better Lyme diagnostic tests.

That meeting and discussions afterward laid the basis for a 2019 Viewpoint article in the Journal of Clinical Infectious Diseases with the provocative title, “Direct Diagnostic Tests for Lyme Disease“.

Direct Diagnostic Tests for Lyme Disease

Direct Diagnostic Tests for Lyme Disease Steven E Schutzer Barbara A Body Jeff Boyle Bernard M Branson Raymond J Dattwyler Erol Fikrig Noel J Gerald Maria Gomes-SoleckiMartin Kintrup Michel Ledizet … Show more Clinical Infectious Diseases, Volume 68, Issue 6, 15 March 2019, Pages 1052–1057, https://doi.org/10.1093/cid/ciy614

The Viewpoint effort was lead by Stephen Schutzer – an immunologist and sometime ME/CFS researcher – who in 2011 used an analysis of proteins in the cerebral spinal fluid to distinguish post-treatment Lyme disease from chronic fatigue syndrome (ME/CFS).

The authors got right to the point: the serologic tests presently used, they wrote, “cannot distinguish active infection, past infection, or reinfection”. “Reliable direct-detection methods, on the other hand, now appear achievable”.

It should be noted that the scientific advances allowing such statements to be made provide hope not just for Lyme disease patients but for those with other difficult-to-detect infections. Reliable diagnostic tests have recently been developed quickly for a number of newly emerging diseases such as Middle East respiratory syndrome – coronavirus, Zika infection, and even 2 newly recognized tick-borne borrelia infections (Borrelia mayonii, Borrelia miyamotoi).

B. burgdorfii is a different case, however. Three factors in its makeup (low bacterial load, high antigenic diversity and a wacky genome) have made it particularly difficult to capture.

Antigen Capture

Instead of directly looking for the bacteria itself, it’s possible to look for the antigens (proteins) the bacteria sloughs off into the blood, urine, etc. Past antigen capture efforts have been thrown off by the high antigenic variability found in the Lyme bacteria but new developments in mass spectrometry, and antigen enrichment and stabilization are making antigen capture a real possibility for capturing B. burgdorfii. 

A Better PCR

B burgdorfii

Three aspects of B. burgdorfii make it difficult to find.

B. burgdorfii’s second trick for evading capture – low bacterial loads in the blood – have made it difficult to capture by PCR.  Enter high-throughput sequencing techniques that have been developed to scan larger blood samples. Frequently used to detect exotic infections, the authors asserted these techniques can “be applied successfully to Lyme disease diagnostics”.

They know – because they’ve done them. These tests, which are 200 times more sensitive than normal PCR, may just be the tip of the iceberg, though. Adding other measures to their Lyme test kit allowed the authors to increase the sensitivity of their PCR a jaw-dropping 16,000 fold – enabling them to catch many more cases of Lyme disease than had been previously detected.

Instead of the .5 ml of plasma usually taken, the authors took 1.25 ml of whole blood, used a technique to amplify the bacteria present, and then used multiple primers.

Next Generation Sequencing

B. burgdorfii’s third evasive maneuver – its complex and unusual genome consisting of high levels of circular plasmids – has enabled it to evade capture in the past, but the development of a new technique (“long-read sequencing”) has allowed Pacific Bioscience to uncover hallmark sequences of the bug’s genome that can conceivably be targeted in diagnostic tests.

Serology Not Dead Yet

Serological testing, which relies on assessing the immune response to the bug, has a couple of problems, but doctors are familiar with serological testing and it may be cheaper and easier to use than other techniques. Improved serological testing could clearly provide a boon as well.

Just a week ago, a biomedical engineering group from Columbia published a study using a new serological test which purportedly can diagnose a Lyme infection in just 15 minutes. This test which uses “microfluidics” was much more effective than the standard tests at diagnosing early infections. The test needs to be further refined and tested, but the early results were good.

Effective Lyme Test Now Technically Possible

The advances enabled the authors to assert that “the goal of an active-infection diagnostic test is now technically achievable”. Note the word “technically”. We’re not there yet.

Understanding the full breadth of B. burgdorfii’s genetic diversity, creating better genomic databases, optimizing sample collection procedures and other issues need to be resolved for that to happen. That’s all a matter of funding; i.e. the political will to get the Lyme (and other tick-borne illnesses) under control.

New NIH Emphasis on Lyme Disease 

Finally, in a last bit of good news – the NIH will be ploughing more resources into Lyme research over the next five years.

Lyme disease has differed little from ME/CFS, fibromyalgia and others in its neglect at the NIH, and new NIH emphasis on Lyme was the result of years of advocacy work. In some ways, ME/CFS advocacy is on a parallel track – it’s just a few years behind. A Congressional Lyme Disease Caucus,led by two Lyme champions, and that was officially formed in 2013, paved the way.

Lyme strategic plan

Years of advocacy paid off when the NIH published a strategic plan for Lyme. The NIH is now working on a strategic plan for ME/CFS.

The 2016 21st Century Cures Act mandated the establishment of the Tick-Borne Diseases Working Group the NIH. In 2018, that group produced a report outlining recommendations for research which included increasing funding, improving diagnostics and, more importantly, developing a strategic plan.

That plan was recently published, and when it was, Rep. Chris Smith, one of the leaders of the Lyme Caucus, and a long time advocate for more Lyme research, reported advocacy efforts had paid off:

“After lagging for decades, NIH is all in for researching Lyme and other tick-borne diseases to better diagnose and treat those suffering from this horrific disease. This is great news for patients and Lyme-literate doctors who will now have serious, federal partners working aggressively to improve strategies for the detection, treatment, and one day, prevention of Lyme.”

That plan includes a number of intriguing focii, including determining the cause of an ME/CFS-like disease (post-treatment Lyme disease syndrome), better understanding the only known food allergy that can be induced by an insect bite (alpha gal syndrome), and developing rapid and direct detection diagnostic tests as well as vaccines and immune-based treatments.

Lyme isn’t the only neglected disease benefiting from effective advocacy. The money the HEAL project is pumping into efforts at the NIH to fight the opioid epidemic and create better pain drugs resulted from a public outcry. ME/CFS, with its ramp-up of advocacy efforts, and the NIH’s work on a strategic plan, is hopefully following a similar path as Lyme disease.

See- Did a Pivotal Moment for ME/CFS Just Happen?

Smith is not nearly done with Lyme advocacy. His next trick is a bill (TICK Act (HR 3073) that would create a national strategy to prevent and treat Lyme and similar diseases.

Conclusion

Rapidly decreasing technological costs are helping the search for better diagnostic tests. More work needs to be done, though, to validate a test and bring it to market.

The takeaway message from the Direct Diagnosis paper is that we now have the technology needed to develop a reliable, effective test for Lyme disease. Such a test would identify many people who don’t know they have the disease and stop unneeded treatment in those who don’t have it. It should also help us understand what’s going on in those who have been treated and remain ill (post-treatment Lyme Disease).

The missing element has been the political will to comprehensively tackle the disease and provide the necessary research funding.

That appears to be changing as well. Years of advocacy paid off with the recent production of a strategic plan to comprehensively fight Lyme disease. The NIH’s new emphasis should further advance the development of better diagnostic tests and, hopefully create new treatment possibilities. With ME/CFS on a similar path with it’s own strategic plan being developed, it’ll be illuminating to see how much Lyme disease funding shoots up over the next couple of years.

More on Lyme Disease From Simmaron

Post Treatment Lyme Disease Unmasked? Immune Hole in the Illness Identified

The Epstein-Barr Virus – Could it be Causing Neuroinflammation in ME/CFS?

EBV has been a virus of interest since almost day one in chronic fatigue syndrome (ME/CFS). In fact, at one point, EBV was such a hot topic that ME/CFS was called for a time “chronic Epstein-Barr virus” disease.

Virion EBV

Epstein-Barr virus virions (circular centers). Virions are the form of the virus which infects other cells. EBV dUTPase is released when the process of creating virions is aborted…

While studies have generally failed to find evidence of EBV reactivation, EBV has never fallen out of the picture with ME/CFS and for good reason. For one, it’s entirely possible that researchers were looking in the wrong place to determine if EBV is an issue in this disease.  For another, EBV infection in adolescence or later and the infectious mononucleosis (glandular fever) it produces, is a common trigger in ME/CFS, and is a proven risk factor for multiple sclerosis.

Besides ME/CFS, researchers are continuing to assess the role EBV may play in many serious illnesses including multiple sclerosis (MS), systemic lupus erythematosus (SLE), Guillain-Barre Syndrome, several cancers,  rheumatoid arthritis (RA), juvenile idiopathic arthritis (JIA), inflammatory bowel disease (IBD), celiac disease, schizophrenia, and others.

Neuroinflammation, of course, is a hot, hot (pun intended) topic in both ME/CFS and fibromyalgia. Recent studies suggest neuroinflammation is present in both diseases and major studies are underway to validate that finding.

Nobody until now, though has attempted to complete the circle, and bring that “original gangster” in ME/CFS – Epstein Barr Virus – and the new guy in town – neuroinflammation – together.  Could EBV be causing or contributing to the neuroinflammation present in the disease?

Some History

Over 10 years of work by an Ohio State University team lead by Maria Ariza and Marshall Williams has been turning the EBV question in ME/CFS on its head. High levels of EBV, they believe, are not the problem in ME/CFS at all. In fact, their studies suggest that EBV may be at its most dangerous in ME/CFS not when it reactivates – but when it fails to reactivate properly.

dTUPase model

The Ohio State University dUTPase continuing NIH grant is in its 9th year.

By the time the impaired immune systems of people with ME/CFS have started knocking down EBV’s attempt at reactivation, the bug has already produced a potentially pathogenic protein called dUTPase. The Ohio State University researchers believe this protein may be wreaking havoc in a large subset of people with ME/CFS.

With the NIH supporting them every step of the way – their continuing grant on dUTPase is now in its 9th year – the evidence that this protein is contributing to ME/CFS (and other diseases) has continued to build.

In 2012, the group found evidence that the immune systems of people in a large subset of ME/CFS patients were indeed battling this protein. Just a year later they showed that even when viral loads of EBV were low, dUTPase could still be triggering a significant pro-inflammatory response. That finding suggested that failed prior attempts to link EBV reactivation to ME/CFS were barking up the wrong tree.

Two years later, they demonstrated that dUTPase was able to make its way into exosomes (now a major topic of interest in ME/CFS), cross the blood-brain barrier, produce major immune effects, and perhaps even promote further EBV infections.

Then a 2017 study added another herpesvirus long suspected in ME/CFS – HHV-6 – to the mix. That study found antibodies to dUTPases produced by both EBV and HHV-6 in almost fifty percent of the ME/CFS patients.  That suggested that the two herpesviruses might even be reactivating each other – a feature found in some very immune suppressed states including organ transplant patients and drug induced hypersensitivity syndrome.

Then again, really significant immune suppression in ME/CFS may not be a surprise. Up to 75% of ME/CFS patients were found to have low numbers of the B-cells designed to keep EBV in check in a recent study.

If the immune system wasn’t having enough trouble, in 2017 the first evidence of an autoimmune process involving EBV dUTPase was found in ME/CFS. Autoantibodies to the human dUTPases (humans produce a dUTPase as well) were found in ME/CFS – at much higher levels than in healthy controls (39% vs. 5%). That suggested that the immune response to EBV and HHV-6 dUTPase may have gone awry in some people with ME/CFS. Their bodies were now attacking their own human dUTPase.

The 2019 Study

In the present study we provide further evidence…. (that) dUTPase protein…could contribute to the development of a neuroinflammatory microenvironment in the brain(s) (of a subset of ME/CFS patients.)  The authors

Epstein-Barr Virus dUTPase Induces Neuroinflammatory Mediators: Implications for Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. Marshall V. Williams PhD; Brandon Cox ; William P. Lafuse PhD; and Maria Eugenia Ariza, PhD. Clinical Therapeutics March 2019

In 2019, the team took another step. In an earlier study they’d demonstrated that the EBV dUTPase protein could be causing or contributing to the symptoms present in ME/CFS. Since many of these symptoms can be produced by the brain, they next asked if the enzyme could be affecting the integrity of the blood-brain barrier (BBB) and other aspects of neuroinflammation.

There’s a pretty good reason to believe this might be the case. EBV, after all, has been associated with some pretty nasty neurological diseases. The virus loves to hang out in nerve cells and astrocytes, is a risk factor for M.S. and has, in fact, been found scattered throughout the astrocytes and microglial cells in MS patients’ brains.

The Ohio State University researchers plopped the dUTPase protein into a variety of cells and then determined how it affected the expression of genes that play an important role in maintaining the blood brain barrier (BBB) and the functioning of various brain cells (cerebral microvascular endothelial cells, astrocytes, microglia cells).

The big bug’s dUTPase protein turned out to be quite adept at tweaking genes and proteins associated with the BBB and neuroinflammation. It turned on 12 of 15 genes and 32 of the 100 proteins examined in vitro (in the lab) and 34 of the 84 genes examined in mice.

The fact that these genes play a role in BBB integrity/function, fatigue, pain synapses and their functioning as well as tryptophan, dopamine, and serotonin metabolism suggested that this enzyme, in or out of the brain, could conceivably cause widespread problems.

How the Blood-Brain Barrier Works

 

 

All in all, the protein appeared to be doing its best to find a way to get EBV into the brain. That’s perhaps not a surprise given how much EBV loves to hang out in neurons. As EBV dUTPase was down regulating the expression of genes dedicated to producing a tight BBB it was “strongly” inducing the expression of two cytokines (IL-6 and IL-1β) known to disrupt The BBB.

If EBV dUTPase gets inside the brain, it seems almost guaranteed to cause neuroinflammation.  Studies indicate it can trigger microglial cells and astrocytes (star-shaped immune cells in the brain) to produce potent pro-inflammatory cytokines (IL-6, IL-1β and TNF-α). It also prompts astrocytes to produce a substance (PTGS2/COX-2) associated with neuroninflammatory toxicity. Plus it’s able to alter the expression of genes associated with pain (GPR8451 and GCH152) and fatigue (TBC1D153) to boot.

In mice, it altered the expression of genes associated with cognition (synaptic plasticity, learning and memory).  One of the more intriguing findings, given the possible disruption of the kynurenine pathway in ME/CFS, was the protein’s potential to increase synthesis of a potent neurotoxin called quinolinic acid. Genes associated with the metabolism of two of the major neurotransmitters in the brain, dopamine, and serotonin, were also affected.

EBV dUTPase neuroinflammation

If EBV dUTPase has indeed been able to get into ME/CFS patient’s brains it seems almost guaranteed to cause neuroinflammation

All in all, EBV dUTPase is not a protein anyone wants hanging out in their head. It is, however, a protein that could potentially produce a lot of the problems found in ME/CFS.  This study demonstrated that the protein appears to have the capability to make its way to ME/CFS patient’s brains. Determining if it has will take further investigations, however.

It should be noted that the protein and its antibodies (or the autoantibodies to the human dUTPase) are not found in everyone with ME/CFS but the potential subset – ranging from 30% to 60% of those tested so far, is pretty darn large.

Plus, the virus is heavily implicated in the stress response. If you feel like your nervous system is over-reacting to, well, anything (or everything), EBV and this protein could be a factor. Of all the viruses, EBV and the herpesviruses love most to come out and play when one’s system is stressed.

In fact, Ron Glaser, one of the initiators of the EBV dUTPase research effort, demonstrated back in 1991 that EBV thrives in situations of psychological stress. Given the enormous stress people with ME/CFS are under, and the affects the illness has on both axes of the stress response, it makes sense that the virus might be continually trying to reactivate – and spilling it’s toxic protein into the bloodstreams of some people with this disease.

A Good-bye to a Pioneer

Ron Glaser

Glaser was shocked he couldn’t get his ME/CFS grant applications funded at the NIH

Ron Glaser was something of a legend in his own time. With his doctorate in pathology, his EBV citations alone total over 100. All told he published over 300 papers. Glaser co-founded Institute for Behavioral Medicine Research, which under his leadership brought in over 140 million in grant money over 20 years. At one point he was one of the world’s most cited authors.

His memorials mention his impact on the psychoneuroimmunological (PNI) field, his enthusiasm, (and the red and white Corvette he loved). What they don’t mention is that this leader also devoted time to a much neglected field called chronic fatigue syndrome. Glaser, in fact, took the time out of his busy schedule to sit on the now disbanded federal advisory committee for ME/CFS (CFSAC).

I vividly remember talking to him. He was not a man to mince words. An accomplished researcher with a long history of grant success, Glaser was first shocked, and then very angry at the rejections piling up for his ME/CFS grant applications. He just couldn’t understand it. Never in his decades of work had he experienced such a thing.

Stating, ironically, he couldn’t stand the stress (he did look like he was about to burst a blood vessel), he eventually moved on, but not before making his experiences perfectly clear to the federal advisory committee and everyone around him.

Glaser was not happy at not being able to work more in ME/CFS, but the work he did did not go for naught. Glaser first published on EBV dUTPase in 1985 and on EBV and ME/CFS in 1988 and his work lives on in Ariza and William’s studies on ME/CFS today. Check out a memorium to Ron here. 

Marshall Williams – On the Continuing Hunt for EBV dUTPase in ME/CFS

What about the connection between this protein and the presence of infectious mononucleosis/glandular fever in ME/CFS? Do we have any idea if the enzyme is more likely to be found in people who’s disease was triggered by IM or who had an acute, flu-like onset?

That is an excellent question. We are in the process of trying to obtain longitudinal serum samples from an IM cohort who developed CFS as well as age matched patients who had IM but never developed CFS. Hopefully, that may address this question.

EBV dUTPase exosomes

When EBV (lytic) replication is aborted it tosses EBV dUTPase into exosomes (circles with red marks) which, after binding to TLR receptors on immune cells, tells those cells to turn on proinflammatory and other genes (from Ariza, Williams and Glazer -https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0069827)

This study demonstrated that this enzyme has the potential to disrupt the BBB and enter the brain – and as added bonus – perhaps helps get EBV into the brain. Is there any way to tell if this has actually happened in ME/CFS?

Not really at this point but maybe in the future. Screening CSF from ME/CFS patients for antibodies to the EBV-dUTPase or HHV-6 dUTPase might suggest potentially the presence of these viruses in the brain.

Exosome research is heating up in ME/CFS. Some anecdotal reports show that exosomes in the blood may be affecting energy metabolism and other functions. Could herpesvirus dUTPases be involved? Is there any more information on exosomes and EBV dUTPases?

We have not looked at energy metabolism but there are some reports in the literature that some herpesviruses including EBV and HHV-6 alter mitochondrial function. There is information concerning EBV products in exosomes but most of these have focused on proteins/microRNAs involved with latency.

What is next for your team? 

We are in the process of submitting a manuscript detailing a mechanism(s) by which the EBV-dUTPase and to a lesser extent the HHV-6 dUTPase alter germinal center function, which could contribute to autoimmunity in CFS patients. We will be continuing these studies as well as those regarding neuroinflammation. (B-cells manufacture autoantibodies in the germinal centers found in the lymph nodes and spleen)

Epstein-Barr Virus May Be Turning On Pathogenic Genes in ME/CFS

If there was ever a “prodigal virus” in ME/CFS it would surely be the Epstein-barr virus (EBV). Since the first EBV ME/CFS study 1984 no less than 51 ME/CFS or post-infectious viral studies have featured either Epstein-Barr virus or infectious mononucleosis in their titles. (That leaves out a considerable number of viral and immunological studies which didn’t put EBV in their titles.) While hypotheses of chronic viral reactivation in ME/CFS have lost favor the virus is too complex, too fascinating, and simply too problematic for it not to continue to be studied.

EBV budding out of B-cell

A B-cell with EBV budding out of it

A PubMed search brings up over 500 EBV citations associated with multiple sclerosis and over 30,000 citations associated with the virus.  To get an indication of how broad EBV research continues to be – one of the latest  EBV studies determined if the stress of space flights results in increased levels of EBV reactivation in astronauts. (It did and they advised astronauts to stay away from immunocompromised individuals upon return home…)

The research community clearly continues to find EBV – one of the few viruses our bodies are unable to kick out – a fascinating and important topic. Check out the first in  a series of two blogs on EBV’s possible contributions to ME/CFS.

The Review

In his EBV and ME/CFS review longtime ME/CFS researcher Jonathan Kerr digs down into some past ME/CFS EBV findings which recent understanding of EBV is shedding some new light.

Kerr notes that psychological stress is associated with EBV reactivation and maintaining that state of psychological stress can result in prolonged states of EBV reactivation and diseases such as ME/CFS, nasopharyngeal cancer and post-transplant lymphoproliferative disorder (PTLD).

Many studies have found that stress triggers the release of glucocorticoids which tell the pathogen that the coast is clear and it’s time to start growing the family and producing more virions.

Whether or not the original ME/CFS trigger is associated with increased levels of  psychological stress, the dysfunctions found in both stress response axes (HPA axis, autonomic nervous system) post-ME/CFS suggests that psychological stress could  possibly give a bug like EBV a leg up in diseases like ME/CFS. Plus, other studies have found evidence of an immune hole which could give EBV an extra foothold in ME/CFS.

In the U.S., Ariza and Williams have shown that attempts at EBV replication in ME/CFS can trigger the production of an enzyme called EBV dUTPase which, among other things, results in the production of pro-inflammatory cytokines which may produce fatigue, pain, flu-like symptoms, etc.

Kerr’s group in the U.K., though, has taken a different tack.

The 2008 Study

Assessing the expression of 88 genes Kerr suspected were playing a role in ME/CFS, his group was able to separate healthy controls from ME/CFS patients, and then break those ME/CFS patients into 7 subsets in 2008. No less than 12 of the genes his group assessed were known to be associated with EBV.

Finding such a huge split in gene expression between ME/CFS patients and healthy controls, and then being able to split up the ME/CFS group into gene expression subsets with unique symptom profiles, was striking.

One of the genes which stuck out back then is called Epstein-Barr Virus (EBV) induced gene 2 (EBI2). While EBI2 sounds like it comes from EBV, it’s a human gene. As EBV begins to reactivate it induces the expression of this gene, which regulates B-cell functioning, T-cell mediated antibody responses, and inflammation.

Kerr’s 2008 study suggested the gene was working overtime in 55% of ME/CFS patients. In another analysis, EBI2 was upregulated in 38% of 31 patients vs zero of 40 healthy controls.

The 2010 Study

A larger (n=117 ME/CFS patients) 2010 study analyzed antibodies associated with EBV in eight gene expression subsets. As before, twelve of these genes were known to be associated with Epstein-barr virus (EBV)

EBV Gene 2 expression

Greatly increased expression of the EBV Induced Gene 2 was found in the ME/CFS group

One subset – subset D – stood out in its severity. This group of patients, all females, demonstrated a consistency of the worst kind, posting the lowest functional scores  in no less than five of SF-36 functional domains (physical role, vitality, general health, bodily pain, and total score) and experiencing high rates of muscle pain and sleep issues.

They also led the pack in the expression of  EBV associated genes. Their EB12 genes were turned on and pumping away at higher levels of activity than in any of the other groups. So were all the other 11 associated EBV genes.

In other words, this appeared to be a highly afflicted EBV ME/CFS subset.  EBV may be involved in other subsets, but it appeared to be wreaking special havoc in this one.

Interestingly, the abnormal antibody (EBNA IgG) result found indicated the antibody was not elevated but was reduced. Since antibodies play a key role in immune clearance, the low levels suggested an immune deficit could be present.  For one, they suggested EBV was probably more often found in its latent state in this group.

EBV is found in two forms: its lytic form occurs mostly in epithelial cells, and its latent form in B-cells.  The low levels of EBNA IgG appear to suggest, if I have it right, that EBV is able to survive in B-cells longer, giving it more time, one would think, to possibly tweak those B-cells more. That’s an interesting finding given the role B-cells play in autoimmunity.

Nine Years Later – Science Marches On

Nine years ago, not much was known about EB12 but science has been moving on. EB12 is now recognized as a “critical regulator of the immune response”. It ordinarily plays a valuable role in the interaction between B and T-cell and the antibody response.

Gene expression

Jonathan Kerr believes EBV may be causing a gene to over express itself in ME/CFS

As one might suspect, though, EBV activation of this gene is not associated with good outcomes.  Increased EBI2 expression appears to dysregulate the delicate immune response – increasing B-cell activity (and therefore the risk of autoimmunity)  – while inhibiting T-cell activity – and potentially suppressing the immune system’s ability to deter pathogens and knock out cancerous cells. Kerr pointed out that EBI2 could also be contributing to the reduced cerebral perfusion, gray matter reduction and white matter hyper intensities found in both multiple sclerosis and ME/CFS.

Given the findings of the past 11 years, Kerr suggested that the EB12 gene deserves a deeper look in this disease.  The possibility that a severely ill EBV subset – characterized by a hyperactivation of the EBI2 gene – is present, is, of course enticing. Given that ME/CFS often has an infectious trigger, a special EBV subset makes perfect sense, and if it is present, it may offer some unforseen opportunities.

One of the advantages of having an upregulated gene that’s been implicated in a bunch of nasty diseases is possible increased interest from big pharma. If the EBI2 gene is wreaking havoc in some of the more severely ill ME/CFS patients, help may be at hand in the future.  Kerr pointed to two EBI2 modulators  (GSK682753A, NIBR189) currently under development.

Kerr acknowledged several caveats to his hypothesis. His findings need to be validated by other laboratories using other sets of ME/CFS patients. He noted that finding EBV antibodies in ME/CFS does not in any way indicate that the bug is causing ME/CFS – that is still in doubt. His hypothesis – that EBI2 upregulation is playing an important role in a subset of ME/CFS patients –  is unproven at this point.

It’s a hypothesis though, which is consistent with the data presented thus far and could account for “many of the immune and neurological abnormalities” found in a group of patients.

East African Disease Informs Nath’s Search for the Cause of ME/CFS

Could a disease found in the remote villages of East Africa end up being a model for chronic fatigue syndrome (ME/CFS)?

Ugandan Village

Ugandan Village (from the NIH)

Dr. Avindra Nath – the leader of the NIH Intramural study on ME/CFS –  thinks perhaps so. He’s not daunted by mysterious diseases and nor should he be. Just a couple of years ago his NIH team was able – by bringing new technology to bear – to unravel a mysterious disease plaguing children in Africa. Using a much larger array of tests he’s hoping to do the same in ME/CFS.

Nath became acquainted with “nodding syndrome” at a meeting in Uganda in 2012. This strange and often devastating disease, found in the remote regions of Uganda, Tanzania and South Sudan, causes children’s heads to periodically nod  and can produce seizures, mild to severe cognitive impairment, muteness, gait problems, paralysis and often death. Brain scans have shown significant brain atrophy.

Studies suggested that the disease was linked to a parasite, Onchocerca volvulus, carried by the black fly, but numerous efforts to find the parasite in the brain or cerebral spinal fluid failed.  Attempts to tie it to immune factors including autoantibodies, as well as genetics, toxins, nutritional factors, and others came to naught as well.

Like ME/CFS the speculation regarding the cause of nodding syndrome has been rife with possible connections to autism spectrum disorder, Alzheimer’s, poor nutrition, PTSD and others being put forth. Ugandan psychiatrists have even proposed that the disease is a form of “Developmental Trauma Disorder” brought on by the war.

Enter Nath, Tory Johnson, a former postdoc fellow of his, and Thomas Nutman, a National Institute of Allergy and Infectious Disease (NIAID) researcher.  Suspecting the problem was autoimmunity, they brought out one of their big guns – a kind of protein chip technology that allowed them to screen for thousands of antibodies at once.

The results were tantalizing. The levels of four antibodies were 100 fold higher in the sick children compared to the healthy children.  Further testing revealed that two of these antibodies were more reactive or active in the sick children. They ended up focusing on one antibody found in both the blood and cerebral spinal fluid.

This antibody – which was linked to the leiomodin-1 protein  – reacted 33,000 times more strongly in the children with nodding syndrome.  Interestingly, both groups – the sick and the healthy children – carried the antibodies, but they were elevated in the sick children.

Leiomodin-1 staining neurons

Staining reveals Leiomodin-1 antibody (green) interacts with human neurons

After finding this link, they deepened their search. The leiomodin-1 protein had been found primarily in smooth muscle tissue and the thyroid, but if it was causing the neurodegenerative symptoms it had to be in the brain as well. Further testing, including immunostaining human neurons, indicated that protein was indeed found in parts of the brain imaging studies had indicated were associated with nodding syndrome.

Having established a putative link between the antibody and the disease (that it was found in and could potentially affect the brain) the next step was to demonstrate that the antibody could indeed be causing the disease. Subjecting cultured human neurons to the antibody showed that the antibodies could indeed be damaging the childrens’ neurons.

Getting at the source of the antibody was next. The authors hypothesized that an immune attack against the parasitic worm had gone awry and was attacking the ill childrens’ neurons. This could only happen, though, if the parasitic worm and human neurons shared genetic sequences that could cause the immune system to mistakenly attack human neurons. Studies confirmed that a very short sequence of the parasite’s tropomyosin gene was quite similar to a sequence expressed in human neurons.

autoimmune responses ME/CFS

Nath believes the infections may have triggered a variety of autoimmune responses targeting the brain in ME/CFS

With that, the circle was closed. They had identified an antibody, shown it was in the brains of the sick children, showed that it could do damage to the neurons that were damaged in the children, and demonstrated similar genetic sequences were present in the parasite and humans.

There was still the nagging issue of antibody prevalence, though.  Only slightly over 50% of the sick children had antibodies to leiomodin-1. If the antibody to leiomodin-1 was causing the disease in these children, what was causing the disease in the others?

Nath et al proposed that the parasite triggers a different immune response in different children.  Some of the children developed autoantibodies that damaged neurons in their CNS  – and produced nodding syndrome (which is now understood to be a form of autoimmune epilepsy).

This syndrome is likely not a disease mediated by a single immune specificity. We speculate that nodding syndrome may not be a single antibody syndrome.  Nath et al.

Citing test results which showed a range of elevated autoantibodies in the sick children, they suggested that some children with nodding syndrome have developed antibodies to  neuronal proteins other than leiomodin-1.

A Model for Chronic Fatigue Syndrome (ME/CFS)?

Nath reported that his approach to ME/CFS has been shaped by his experiences with nodding syndrome. He suspects the infectious onset that so many people with this disease experienced triggered their immune system to accidentally produce autoantibodies that are attacking their central nervous system or other parts of the body.

If suspect antibodies show up, future research efforts will presumably proceed down the same pathway as they did in Nodding Disease: first they will identify the proteins the antibodies are attacking, and then they will determine where those proteins are found, and demonstrate experimentally that the antibodies are likely doing damage.

Nath and his compatriots uncovered the antibody connection to nodding disease seven years ago – a long time in this age of fast moving medical technology. Nath reported he’ll be using a newer approach involving mass spectrometry, or phage display, in ME/CFS which will allow him to “probe almost infinite numbers of proteins/peptides”.

Seven years ago, extensive testing had failed to find a culprit leaving the cause of nodding syndrome a complete mystery. In 2017 Nath et. al. produced a clear pathway that explains about 50% of nodding syndrome victims.

Technology Paves the Way

Note that the breakthrough didn’t come from the slow accumulation of results over decades; –  it occurred very quickly and simply required the right technology being applied to the disease. When that happened, a cause of the disease became clear, and researchers simply proceeded down established pathways to prove  it.

Nath and the NIH are looking at much more than antibodies in their intramural study, and ME/CFS, with its multiplicity of triggers, is likely to be more complex than nodding syndrome. The same principle, though, – a variety of autoimmune processes produced by an infectious trigger – may apply.

Dr. Nath appears to have gotten at a cause of one mysterious disease. May he be as successful with this one.

Check out an interview with Dr. Nath

Dr Nath Talks on the ME/CFS NIH Intramural Study

The NIH’s Accelerating Research on ME/CFS Conference

Because of a death in the family, Brian Wallitt will be presenting in Dr. Nath’s place at the NIH conference. Dr. Nath reported that Wallit will present on the high rate of rare diseases found during the first half of the study and some other data but will not present statistical analyses. With just half of the projected participants having finished the first part of a two-part study, the lack of statistical analyses is not really a surprise.

Brian Wallitt will be presenting at 10:00 AM EST on April 5th (day two) of the Accelerating Research on ME/CFS conference – the first NIH sponsored research conference on the disease since 2011. Check out the agenda here.

Learn more about the NIH Conference below.

NIH Brings in New Faces and Looks to the Future in Accelerating ME/CFS Research Conference

Catching ME/CFS in the Act: The Collaborative on Fatigue Following Infection (COFFI)

It sounds like a great idea – combine all the post-infectious fatigue studies together into one database in order to find answers to one of the biggest questions in ME/CFS – why do some people stay ill after an infection while others recover?

infection - chronic fatigue

Every major infection has provoked a similar response – a significant number of people become chronically ill.

COFFI (Collaborative on Fatigue Following Infection) incorporates no less than 9 studies that have examined post-infective fatigue or illness. The Dubbo study – pioneered by Andrew Lloyd and funded by Australian Health Agencies and the Centers for Disease Control (CDC) in the U.S., still in some ways the best study – started it all off.

The most dramatic conclusion of the first Dubbo study was that somewhere around 10% of people exposed to a serious infection remained ill six months later. Remarkably, the kind of infection – viral or bacterial – didn’t matter. It seemed that being exposed to any serious infection left one at risk for a prolonged fatiguing illness.

Since the Dubbo studies began, eight other post-infectious cohort studies have finished up or are underway. The largest of these are the four Chicago cohort studies (about 1000 participants) under the direction of Ben Katz and Lenny Jason, which have been examining infectious mononucleosis college students for almost ten years. There’s also campylobacter gastroenteritis (n=600), Legionnaires disease (n=190), and Ross River Virus (n=60) cohorts. All told, about 3000 people have participated in 9 studies which have examined people who failed to recover from an infection.

COFFI believes that susceptible individuals develop prolonged fatigue after infection because of biological (immune system, autonomic nervous system, etc.), behavioral and/or environmental effects, which produce alterations in neurobehavioural, cardiovascular and/or immunological systems. The goal of the collaborative is to elucidate what went wrong in those with post-viral (and bacterial) illnesses.

On the face of it, the collaboration holds great promise. How better, after all, to learn about how an illness develops than to capture it in its earliest stages?

The Post-Infectious Illness Group

Different flavors of post-infectious illness exist. One set involving diseases like acute disseminated encephalomyelitis and Guillain-Barre Syndrome produces very dramatic symptoms (paralysis, coma) and is studied. The other produces less dramatic symptoms (fatigue, cognitive problems, PEM) etc., but despite the tremendous functional hits seen, has mostly skated under the scientific establishment’s radar.

The studies that have emerged in the second group look like the kind of studies you would expect from a niche topic. They tend to be underfunded, focus on more easily and cheaply assessed factors, are often light on biological analyses, and sometimes focus on behavioral factors.

Nevertheless, some foundational findings have emerged. First – any serious infection is going to incapacitate a significant subset of those afflicted. The results have been remarkably consistent across types of infectious onset, with most showing from 9-13% of those encountering a serious infection of any type are still ill at six months and 7-9% remain ill a year later.

That’s obviously not a small number of people.

Lloyd, the senior author of the collaborative, has enrolled a mishmash of partners. They include biologically oriented members (Ben Katz, Renee Taylor, Ute Vollmer-Conna, Knut-Arne Wensaas, Jeannine L.A. Hautvast), some in-betweener’s (Brun Wyller, Dedra Buchwald, Renee Taylor) and some behaviorists (Peter White, Esther Crawley, Gabrielle Murphy, Rona Moss-Morris).

The Epidemiological Efforts

Giardia

The Bergen Giardia studies demonstrate the funding woes present in this field. They’ve succeeded in documenting high rates of ME/CFS, chronic fatigue and/or irritable bowel syndrome (IBS) years after an extended Giardia outbreak in Norway.  The studies have established that the outbreak has had a significant health impact on a substantial number of people – an important finding for sure – but it’s been unable, until recently, to delve into any biological factors. (A genetic study is underway.)

The Biopsychosocial Efforts

Moss-Morris’s work shows that cognitive behavioral therapy (CBT) has moved into clearly defined biological illnesses such as MS and renal disease. She’s managed to study the behavioral aspects of fatigue and/or conducted CBT trials in no less than five diseases – ME/CFS, IBS, multiple sclerosis, renal disease and cancer. (The MS CBT trial was deemed successful.)

Moss-Morris assessed epidemiological and biopsychosocial factors in people who became ill following a campylobacter infection (food poisoning). Ironically, that study suggested that those who tried hardest to ignore or push past their illness (e.g. who felt “I must not let this get the better of me” and who engaged in all-or-nothing behavior) were most likely to get ill. (So much for the malingering hypothesis).

chaos

The biopsychological studies have failed to provide consistent theme

Psychologist Peter White must have been chagrined to find that his Bart cohort failed to indicate that mood disorders or negative life events contributed to a “fatigue syndrome” after an infection.

The results of Buchwald’s 2000 infectious mononucleosis study must have flummoxed everyone.

It suggested that a greater number of life events more than six months before the illness began and increased family support were predictive of those who remained ill.

The Q fever studies ended up with a similarly hard to understand mix of factors. Female gender, being younger, having a pre-existing health condition, and being hospitalized in the previous 3 months might make some sense, but why would consuming no alcohol and using medication contribute to a prolonged illness?

The Qure study found that long-term doxycycline treatment utterly failed to move the needle on the illness; i.e. a persistent bug is not responsible.  CBT, on the other hand, improved fatigue and symptoms somewhat but completely failed in the most important measure – improving functionality. (By reducing stress, behavioral therapies should provide some symptom reduction…)

The lack of a recognizable theme suggests that the biopsychosocial results are not getting at the root of anything.  If the goal is illness eradication, researchers need to dig into the biology, and biological efforts have indeed achieved better results.

Biological Efforts

The studies that have dug deeper into biology appear to have been more successful.  Blood tests in the Dubbo studies suggested that pathogen persistence was not the issue: in every case the pathogen appeared, at least, to have been vanquished.

The results of the Qure study on the effectiveness of long-term doxycycline treatment in those with prolonged Q fever suggested the same: it found that the standard treatment for the disease had no effect at all on those who remained ill.

Nor did immune activation over time – as measured by cytokine levels – appear to cause disease persistence in the Dubbo group.

The only risk factors identified occurred early in the illness. Higher levels of cytokines and symptom severity early in the illness appeared to set the stage for a prolonged illness. This suggested that the bug – whichever bug it was – did its damage early and then disappeared.

Genetic studies then suggested a reason why. Immune gene polymorphisms were found in this group which predisposed them to a heightened immune response when confronted with a pathogen.  With three studies confirming and extending that finding, it seems solid. It appears that people with polymorphisms in specific immune genes that heighten the inflammatory response are more likely to become and stay ill.

consistency

The biological studies have provided a more consistent theme of immune activation and autonomic nervous system activation.

The ongoing Chicago infectious mononucleosis studies have dug a bit deeper biologically and uncovered some interesting findings.  Autonomic symptoms and early illness severity were predictive of a prolonged illness (while perceived stress, stressful life events, family stress, difficulty functioning and attending school, and psychiatric disorders were not).

Six months of illness resulted in lower oxygen consumption and reduced peak oxygen pulse; i.e. problems utilizing oxygen – something that Hanson’s latest metabolomic study and others suggested may be happening. (The authors called this “reduced fitness” and “efficiency of exercise.”).  Plus, a network analysis was able to diagnose 80% of ill patients using immune factors, and at six months autonomic nervous symptoms stood out. The analysis suggested a powerful pro-inflammatory immune state persisted for as long as 24 months after the initial onset.

The new “Dubbo studies” (“The Sydney Infectious Outcomes Study (SIOS)) have found an early reduction in heart rate variability, suggesting autonomic nervous system involvement.

In contrast to the biopsychosocial-oriented studies, a theme may be emerging in the biological studies: immune activation and autonomic nervous system problems early, resulting possibly in problems with oxygen utilization, with autonomic nervous system problems persisting.

Wyller’s Weird Results Or Why a Poor Study is Worse Than No Study at All

Many of the post-infective studies have been confined to charting epidemiological factors. Only the initial Dubbo study and the Katz/Taylor Chicago studies have tried to dig deeply at all into biological factors. Even then the scope of the studies has been limited.

Brun Wyller’s CEBA studies (Chronic Fatigue Following Acute Epstein-Barr Virus Infection in Adolescents) appeared at first glance, to fix that. The three studies analyzed 149 factors including early illness severity, immune factors, neuroendocrine stress response, cognitive functioning, emotional disturbances, genetics/ epigenetics of candidate genes, personality traits, and critical life events during and after infectious mononucleosis (IM).

Steps Per Day

The first CEBA study (Lifestyle factors during acute Epstein Barr virus infection in adolescents predict physical activity six months later) assessed the effects of the 149 factors on the number of steps taken per day at six months in 200 individuals. None of the markers of infection or immune response studied affected activity levels.  (Nor did any psychological factors).

Instead, three factors – none of which showed up previously in the post-infectious studies – did. Baseline physical activity (steps per day), substance use (alcohol and illicit drugs), and human growth hormone were associated with reduced steps per day after six months. (Notice the opposing substance use results: low alcohol use was a risk factor for post-Q fever illness, while increased alcohol/substance use was a risk factor for post-infectious mononucleosis illness).

The results suggested that sedentary individuals with low HGH levels who were abusing alcohol/drugs and who became ill with IM are predisposed to be, guess what, more sedentary than usual six months after coming down with infectious mononucleosis.

That’s among the most underwhelming and just weird results I’ve ever seen, and one wonders why Wyller bothered to publish it.

Predictors of Chronic Fatigue

Predictors of chronic fatigue in adolescents six months after acute Epstein-Barr virus infection: A prospective cohort study.

Another study of Wyller’s cohort charted biological factors against fatigue at six months. The main finding that a bunch of symptoms (sensory sensitivity, pain severity, functional impairment, negative emotions) were associated with increased fatigue simply stated the obvious. The more fatigued a person was, the more negative emotions they had (what a surprise!), the more functionally limited they were (!!!!), and the more pain they were in (stunning!), etc.

The fact that viral load had no predictive value was in line with past studies. The slightly increased plasma C-reactive protein found (Wyller suggested it was caused by negative life events) and reduced plasma vitamin B12 levels were the only two biological factors that stood out.  Neither will move this field forward significantly.

Predictable Results?

So how did Wyller get such pitiful results?

It turned out the study was not as comprehensive as the 149 factors made it appear to be, and was rudimentary to boot.  Included in that 149 factor set were standard blood tests, demographic results, psychological testing, etc.

Wyller testing ME/CFS

Wyller’s testing regimen made a biological result unlikely.

Wyller used a Fatigue Scale – the Chalder Fatigue Scale – believed be problematic in ME/CFS.  His immune tests mostly consisted of immune cell counts which have historically not been particularly effective.  Natural killer cell cytotoxicity – which has consistently been found to be low in ME/CFS – was not done.

The one stressor used – during the autonomic nervous system testing (deep breathing while supine and during 3 minutes of standing) – was too mild (at least a 10 minute tilt table test is needed to diagnose POTS).

While changes in heart rate and blood pressure have been found in ME/CFS, heart rate variability is a more discerning factor and has been more commonly assessed and found altered in ME/CFS – but was not used in Wyller’s study. The cortisol blood test Wyller used has not been found effective in ME/CFS. (Blood cortisol awakening response and morning saliva cortisol tests (not done) have been more effective).

All in all, the study – with its lack of a significant stressor, its limited testing protocol and the use of measures which have not proved useful in ME/CFS – appears to have been almost doomed to failure.  One wonders why Wyller expected to find anything at all, and the results probably could have been predicted.

They also, not surprisingly, opened the door wide open to a biopsychosocial interpretation of ME/CFS that Wyller walked right through.  Wyller reported that,

“Taken together, the results seem to support a biopsychosocial rather than a biomedical perspective on the development of chronic fatigue and CFS.”

Lenny Jason’s Chicago Studies

The next Chicago studies, led by Lenny Jason, will examine many more biological factors in its next iteration. Unlike the Dubbo, Giardia, Wyller’s studies and others, Jason’s samples predate the illness onset, giving him the potential to uncover biological risk factors present before a person became ill.

He has blood samples from over 4,000 students, 4-5% of whom contracted infectious mononucleosis, which they are following. Papers should start appearing this spring/summer. As of October 2018, Jason was still in the process of applying for grants to study blood and saliva factors. They hope to study autonomic functioning, cytokine, metabolomic and saliva biological risk factors.

Jason’s preservation of his samples in a deep freeze means they’ll be able to be assessed as we learn more about ME/CFS over time.  They provide the potential for uncovering perhaps the greatest mystery of all in ME/CFS – what was going on before ME/CFS actually hit that put one at risk for it?

Conclusion

Time will tell if the The Collaborative on Fatigue Following Infection (COFFI) will help, hurt or do anything at all. If the embarrassingly rudimentary website with its weird ads is any indication, the group may not amount to much.

Wyller’s efforts indicate that rudimentary, poorly targeted efforts can do more harm than good if the authors decide to default to a historical norm: if you can’t find something biological, a biopsychosocial explanation must apply.  His results and other biopsychosocial study results are so bizarre, though, that one wonders if anyone will take them seriously.

trigger - post-infectious fatigue

The post-infectious studies have the possibility of catching the disease in the act.

The biological efforts are another story. These cohorts offer the enticing possibility of catching the disease in the act as it first manifests itself. The first post-infectious fatigue studies – the Dubbo studies – are still some of the best, and outlined some findings that have continued to stand: illness severity is a major risk factor and the bugs that triggered the illness in the first place don’t appear to play a role in prolonging it. The early cytokine and genetic results fit that picture: they suggest a stronger than usual early immune response may set the stage for ME/CFS.

Incorporating more sophisticated tests, the Chicago infectious immune studies add the possibility of long-term autonomic nervous system problems, further suggest immune issues play a role and, intriguingly, provide the first signs of impaired energy production during exercise.

Jason, if he can get the money to test his samples, has the opportunity, with his metabolomic, autonomic nervous system and immune testing, to provide more insights into how this illness got started in the first place and why it remains. Plus, his frozen samples provide the opportunity for future researchers to dig even deeper into these questions. They should prove invaluable.

 

 

Immune Factor May Jump Start Chronic Fatigue Syndrome (ME/CFS)

December 31, 2018

“For the first time, we have shown that people who are prone to develop a CFS-like illness have an overactive immune system, both before and during a challenge to the immune system. Our findings suggest that people who have an exaggerated immune response to a trigger may be more at risk of developing CFS.” Alice Russell

This British study is interesting in so many ways. Most importantly, it draws a link between an overactive immune system and CFS-like chronic illness in Hepatitis C patients who were studied before and after treatment with an immune stimulant. The authors believe it may tell us why some people come down with chronic fatigue syndrome (ME/CFS) after an infection. If so the Brits have found the first predictive blood factor for ME/CFS.

Psychoneuroendocrinology. 2018 Dec 14. pii: S0306-4530(18)30196-3. doi: 10.1016/j.psyneuen.2018.11.032. Persistent fatigue induced by interferon-alpha: a novel, inflammation-based, proxy model of chronic fatigue syndrome. Russell A1, Hepgul N2, Nikkheslat N3, Borsini A4, Zajkowska Z5, Moll N6, Forton D7, Agarwal K8, Chalder T9, Mondelli V10, Hotopf M11, Cleare A12, Murphy G13, Foster G14, Wong T15, Schütze GA16, Schwarz MJ17, Harrison N18, Zunszain PA19, Pariante CM20.

It is interesting in one way, because it comes out of King’s College London – the longtime home of Simon Wessely, the British psychologist who developed the cognitive behavioral therapy (CBT) and graded exercise therapy (GET) approach to chronic fatigue syndrome (ME/CFS). Wessely, a leader of the biopsychosocial approach to ME/CFS, championed the idea that psychological and social factors largely perpetuate ME/CFS.  Psychiatrists Trudy Chalder and Mathew Holtorf also hail from King’s College.  (Anthony Cleare, another psychiatrist from King’s College, has done substantial research into the HPA axis in ME/CFS over the past 20 years. Cleare’s 1995 paper used cortisol tests to differentiate ME/CFS from depression.)

Kings College Medicine

King’s College London has been the home of several prominent pyschiatrists studying ME/CFS (By Stephen Craven, CC BY-SA 2.0, https://commons.wikimedia.org/w/index.php?curid=13848828)

Six years ago Medical Express reported that the PACE Trial – which Kings College researchers participated in – proved that CBT/GET practices “provide good value for the money“. Three years ago Queen Mary College of London and King’s College London dug their feet in to prevent the release of the raw PACE data.  It was King’s College that called the attempt to get the data “vexatious,” which in legal terms basically means without merit. The PACE findings are now in the throws of being discredited.

The study is also interesting because it was funded by the Medical Research Council (MRC), a United Kingdom based governmental agency that funds medical research. The MRC, which helped fund the PACE trial, has been a mixed bag. Funded studies on ethnicity, risk factors (biopsychosocial risk factors) and CBT speak to a strong behavioral thrust. However, the MRC has also funded studies on the mitochondria, the autonomic nervous system and now on an immunological model of ME/CFS.

A new generation of psychiatrists from King’s College appear to be taking a different tack. Carmine Pariante, who has focused for years on the physiological roots of depression, has been using hepatitis C patients to try and understand how immune mediated fatigue and depression arise.

A Model for ME/CFS?

It turns out that when hepatitis C patients are given interferon-alpha (IFN-a) about a third of them develop severe fatigue and/or become depressed. The realization that an immune activating drug was causing fatigue and depression in those who were not fatigued or depressed before was a revelation to the medical community. That led to the idea of sickness behavior, which posits that during an infection, the brain and immune system induce symptoms (flu-like symptoms) that force individuals to isolate themselves, stopping the spread of the infection.

trigger ME/CFS

Did high IL-10 levels jump start ME/CFS?

Since many people with chronic fatigue syndrome (ME/CFS) are by definition caught in a chronic case of “sickness behavior” (a chronic illness state triggered by an infectious event), hepatitis C patients provide the possibility of real insights into ME/CFS.  If researchers can determine how immune activation triggers flu-like symptoms and/or depression in people being treated for hepatitis, they may get clues to what is going on with ME/CFS.

In an action that proved enormously helpful, the group took baseline measures of immune activation prior to the introduction of the interferon drug, and then afterwards. They also assessed psychological factors and metabolites associated with the kynurenine system.

THE STUDY

Psychological Factors Play No Role

In a finding that must have disappointed Trudy Chalder and Mathew Hotopf – who were also part of the study – psychological factors struck out on all counts. Neither a history of depression, stressful life events in the prior six months or early life trauma had any effect on  those who became ill following the IFN-a administration.

Cytokines Not Perpetuating Fatigue

Cytokines weren’t, strictly speaking, perpetuating fatigue in the ill hepatitis C group either. The cytokine levels in both the recovered and the still fatigued hepatitis C patient were similar.

They may, however, have triggered it.

Possible Predisposing Factor Identified

The hepatitis patients who came down with severe fatigue demonstrated increased IL-10 and IL-6 levels early on – very early on.  In fact, hepatitis C patients who became ill had high IL-10 levels BEFORE they received the drug. High levels of IL-6, a pro-inflammatory cytokine which has been associated with fatigue, were found early in the illness.

IL-10

High Il-10 levels at baseline may be a biological risk factor for coming down with ME/CFS.

The researchers speculated that patients’ immune systems were primed to take off prior to their receiving the drug – and it was this immune priming which lead them to become ill after taking the drug.

Six months later their IL-10 levels, interestingly, were normal – suggesting that IL-10 had done it’s work quickly and then faded into the background, leaving behind a chronic state of fatigue.

The beauty of this study is that it identifies possibly the earliest blood factor yet – increased IL-10 levels – that may set someone on the path to developing ME/CFS.

While the authors didn’t attempt to explain how these factors produce ME/CFS, some possibilities immediately present themselves. Higher than normal IL-10 levels could suppress one’s ability to quickly clear an infection.  High IL-10 levels and several IL-10 polymorphisms have also been associated with the development of lupus, an autoimmune disorder.

Andrew Miller of Emory University has some ideas of his own.

Miller Time

Andrew Miller, PhD also believes that the ‘sickness behavior’ he finds in hepatitis C patients given IFN-a is similar to what’s happening in ME/CFS.  Miller, however, came to that conclusion, by looking at the brain.

He found reduced activation of the striatum – a part of the basal ganglia that produces dopamine – in fatigued hepatitis C patients and people with ME/CFS. This finding suggested that reduced dopamine levels in ME/CFS may be producing problems with motor activation (physical activity) and fatigue. Indeed, primate studies indicate that immune activation in the presence of low dopamine levels results in enormous fatigue, motor slowing, and depression.

Unrewarding Reward: The Basal Ganglia, Inflammation and Fatigue In Chronic Fatigue Syndrome

Another study, taking a deeper look at what happens to a brain on IFN-a, found it took just four hours for IFN-a to produce microstructural changes in the left striatum – changes that were “strikingly correlated” with the development of fatigue. The authors reported that increased levels of lactate and altered pH – two problems found in ME/CFS –  may set the stage for these microstructural abnormalities.

Microstructural Havoc: The Immune System, Fatigue and the Brain – An ME/CFS and FM Scenario

Immune Hypersensitivity Syndrome?

This presents the possibility that infection-produced inflammation could knock out dopamine production permanently, leaving behind – and this may be the important part – a hypersensitized reaction to inflammation. Miller believes that dopamine deprivation causes the basal ganglia to over-respond to inflammatory signals, resulting in the fatigue and other symptoms associated with “sickness behavior”.

That sickness behavior includes mood changes. The British group found that a “biological sensitivity”, or over-reaction to IFN-a, predicted who would come down with depression while on the drug.

When Anthony Cleare of King’s College trashed Montoya’s cytokine findings last year because they didn’t show cytokine elevations, he missed the point that Montoya’s results may have pointed to a possible exquisite sensitization to cytokines in ME/CFS.

Conclusion

It was very good to see an MRC-funded physiological study pan out and get such abundant media coverage.  Thankfully, Lenny Jason is in a good position to follow up on this study result to see if IL-10 is indeed raised in young people who fail to recover from infectious mononucleosis. If that pans out, the first predisposing factor for ME/CFS in the blood will have been found.

That finding will then give us an entry point to determining how ME/CFS comes about. Avindra Nath’s and Derya Unutmaz’s studies of short-duration post-infectious ME/CFS patients would hopefully be able to piggyback on the British finding and begin to unravel the genesis of ME/CFS.

The basal ganglia/hepatitis connection is fascinating because it suggests that the Brits’ hypothesis, that fatigued hepatitis C patients present a good model for ME/CFS, may be correct. Andrew Miller’s and other studies suggests that the brain changes in ME/CFS replicate those of the fatigued hepatitis C patients. Interestingly, they affect the basal ganglia – a part of the brain involved in motor activation (physical movement), learning, cognition and fatigue.

Miller’s hypothesis that inflammation may knock out dopamine production in the basal ganglia resulting in a hypersensitization to immune signals in ME/CFS is compelling. Neuroinflammation has been linked to microglial activation and reduced dopamine levels.  Plus two studies have found reduced basal ganglia activation in FM. One study suggested the basal ganglia could be causing the movement problems in FM.

Spinning Fibromyalgia: Brain Findings Suggest Dopamine May Be Key

Given that the basal ganglia affects movement, fatigue and reward, it would seem to present a rich vein for ME/CFS researchers to mine.  In other fields, researchers would probably be vigorously digging away at a vein with this much potential ore in it, but in ME/CFS researchers are just scratching the surface. Getting  more out of the research community will require that the federal government fulfill its promise to invigorate this field.

In the meantime, it’s good to see the MRC and the Brits, psychiatrists most of them (!), make good on a physiological study, hopefully set the stage for more to come.

Could Crippled Herpesviruses Be Contributing to Chronic Fatigue Syndrome (ME/CFS) and Other Diseases?

We provide evidence…. that herpesviruses dUTPases…(have) unique immunoregulatory functions that can alter the inflammatory microenvironment and thus exacerbate the immune pathology of herpesvirus-related diseases including myalgic encephalomyelitis/chronic fatigue syndrome, autoimmune diseases, and cancer. Williams et. al.

Most people are exposed to herpesviruses such as Epstein-Barr virus (EBV) early in their lives and carry the viruses in latent form in their B cells. Sometimes – particularly when the body is under stress – the immune system slips a bit and the viruses reactivate, causing anything from no symptoms at all to – more rarely – being associated with such devastating disorders as autoimmune diseases and cancer.  One study suggests that glucocorticoids released during stress tell EBV to come out of hibernation.

EBV virions leukemia

EBV infected (green) leukemia cells

Herpesviruses have a long enough history in ME/CFS for the disease to have been referred to as chronic Epstein-Barr virus syndrome by some in the 1980’s. However, over thirty years later, the role herpesviruses play in ME/CFS is unclear. Are they simply a common trigger of ME/CFS or do they play a more fundamental role? Several studies have found no evidence of herpesvirus reactivation while others suggest immune problems exist that could allow the virus to wreak havoc in some patients.

The Ohio State University team lead by Maria Ariza and Marshall Williams believes researchers have missed an obvious possibility. They don’t believe the virus per se is the problem. (If they’re right, you can basically throw out all the viral load studies.)

It’s not that the virus is reactivating; in fact, they believe the virus may be most dangerous in ME/CFS when it fails to reactivate properly and produces kind of a very low-level, smoldering infection. Even as the immune system in people with ME/CFS is mostly smothering EBV, the virus is producing a protein that’s causing harm.

“Surprisingly, none of these studies have approached the possibility that virus encoded proteins, rather than the viruses themselves, may act as drivers of/contribute to the pathophysiological alterations observed in a subset of patients with ME/CFS.” Authors

It turns out that in herpesviruses a failure to replicate produces something called “abortive lytic replication”.  As it does that, it produces proteins that get ejected into the blood stream or get inserted in vesicles called exosomes, which then travel through the blood. These exosomes are now believed to play important roles in cell to cell communication.  (Maureen Hanson is now studying exosomes in ME/CFS).

 

 

The protein released during abortive lytic replication is an enzyme called deoxyuridine triphosphate nucleotidohydrolase or EBV-dUTPase. The unusual herpesvirus dUTPase saga at Ohio State University began way back in 1985 with a Williams/Glaser study. It gathered force in the mid-2000’s with a series of papers suggesting the protein might be a good target for chemotherapy, produced “sickness behavior” in mice, and triggered pro-inflammatory cytokine production.

In 2010 Ronald Glaser won an NIH grant to study the protein titled Stress Effects on Virus Protein induced inflammation and sickness behavior and the hunt was on to determine dUTPase’s effects in ME/CFS.  (This long standing grant continues today under Ariza and Williams’ name.)

A 2013 paper suggested dUTPase might provide a way to reconcile the studies which had not found herpesvirus reactivation in ME/CFS with others suggesting that the virus could be having profound effects. It found that even under conditions of low viral load, herpesvirus dUTPases were able to trigger a pro-inflammatory response strong enough to promote atherosclerosis and perhaps even precipitate a heart attack.

In 2012, Williams, Ariza , Glaser and Martin Lerner and Lenny Jason produced the first direct evidence that dUTPases may be producing problems in ME/CFS. The small study found a prolonged antibody response to the protein in a large subset of ME/CFS patients.

A 2014 study indicated that during EBV’s last gasp while undergoing lytic replication, the virus was pouring enough dUTPase into exosomes to produce major immune effects that supported or promoted the establishment/maintenance of further EBV infections.

The 2017 ME/CFS Study

J Med Virol. 2017 Mar 17. doi: 10.1002/jmv.24810. [Epub ahead of print] Myalgic Encephalomyelitis/Chronic Fatigue Syndrome and Gulf War Illness patients exhibit increased humoral responses to the Herpesviruses-encoded dUTPase: Implications in disease pathophysiologyHalpin P1, Williams MV1,2, Klimas NG3,4, Fletcher MA3,4, Barnes Z3,5, Ariza ME1,2.

Then, in an expanded version of the 2012 study, the group in 2017 (which also included Nancy Klimas and Mary Fletcher) presented stronger evidence that herpesvirus produced dUTPases were present and could be causing harm in a subset of ME/CFS patients. The study looked for evidence that herpesvirus produced dUTPases were tweaking the immune systems of 74 ME/CFS patients – and found it.

The fact that antibodies to dUTPases produced by both EBV and HHV-6 were found in almost fifty percent of the ME/CFS patients in the study suggested that the two herpesviruses may be reactivating each other in ME/CFS – a feature also found in immune suppressed states such as organ transplant patients and drug induced hypersensitivity syndrome (DRSS).

Plus, for the first time, autoantibodies to the human dUTPases (humans produce a dUTPase as well) were found in ME/CFS – at much higher levels than in healthy controls (39% vs. 5%).

The authors suggested the Loebel’s 2014 study, which uncovered problems that ME/CFS patients’ T cell’s were having in suppressing EBV, could account for the evidence of multiple herpesvirus reactivations.

EBV I: A Deficient Immune Response, Increased Levels of Epstein-Barr Virus Opens Up EBV Question in Chronic Fatigue Syndrome Again

The immune system does ultimately jump in and suppress the virus in most people with ME/CFS, but it takes its time to do that. That delay appears to give herpesviruses the time they need to spill immune altering dUTPases into the bloodstream and slip them into exosomes to travel through the body.

EBV smoldering infection

EBV is halted from fully reactivating but the authors believe the smoldering infection present in ME/CFS could have significant consequences for some.

Besides the immune alterations possibly caused by herpesvirus produced dUTPases, they may be contributing to numerous symptoms including flu-like symptoms, fatigue, cognitive problems, anxiety, etc. in ME/CFS.

Plus, because failed herpesvirus reactivations commonly occur alongside actual herpesvirus reactivations, herpesvirus encoded dUTPases could end up being an excellent biomarker for herpesvirus reactivations.

This strange model of partial viral reactivation could end up playing a role in ME/CFS, Gulf War Syndrome and other diseases in several ways. It could be actually driving ME/CFS in a subset of patients, or it could, along with other possibly related immune issues, be exacerbating it.

Next Steps

However it all works out, it’s clear that the Ohio State University team’s long embrace of this novel protein is paying off. The more work they do with herpesvirus-encoded dUTPases, the more evidence they’re uncovering that it may play role in ME/CFS and other diseases. They have an 8-year continuing NIH grant under their belts – a grant that looks like it and the herpesvirus-dUTPase-ME/CFS saga will likely continue in the foreseeable future.

If the findings hold up, it may even provide a treatment option – the authors have published a paper alerting drug-makers to the potential this escaped protein may hold in treating herpesvirus infections.

Dr. Williams reported that the group has “some exciting data” concerning the potential role dUTPase plays in autoantibody production and the neurological effects the protein may be having in people with ME/CFS. The manuscripts are being written up now and will be submitted shortly.

 

Post Treatment Lyme Disease Unmasked? Immune Hole in the Illness Identified

It’s one of the bigger puzzles in medicine and one that has obvious implications for chronic fatigue syndrome (ME/CFS): why some people given oral antibiotics recover from Lyme disease while others sometimes remain sick for decades. Given the infectious trigger often seen in ME/CFS, any post-viral or post-bacterial illness is of interest. For the most part, researchers don’t know why some people fail to recover fully from an infection; they’ve hardly touched the subject, but an answer in Lyme disease may be coming.

The Study

The study was not large, containing 32 patients and 18 healthy controls, but the results were exciting, providing for the first time a possible biological explanation for the puzzling problem of post-treatment Lyme disease syndrome (PTLDS).

targeted approach Lyme

The ability to target a specific part of the immune system was the key to this studies success.

It’s not taking away anything from the researchers that the study wasn’t particularly innovative. In fact, it did something rather obvious, something that’s been done and is being done in ME/CFS (by Lenny Jason). The study took people with early Lyme disease (n=32) and healthy controls (n=18) and then (after providing the standard antibiotic regimen) followed them over two years, measuring their immune status.

The difference between this successful Lyme disease study and the less successful ME/CFS studies that measured cytokines, gene expression, and autonomic functioning is that the Lyme researchers had a clear target. Mouse studies have shown that the Borrelia burgdorferi bacteria that cause Lyme disease hammer the B-cells, and that’s what the study focused on.

Results

We herein identify plasmablasts as a key B cell population that correlates with resolution of Bb infection and Lyme disease in humans. The authors

They found that B-cells called plasmablasts were elevated prior to antibiotic treatment in patients who returned to health.  Plasmablasts are activated B-cells which circulate for a time in the blood in response to an infection.  The higher level of plasmablasts in the recovered patients suggests that these patients simply mounted a stronger immune response to the infection. That was kind of a no-brainer, but the strength of the study was that they were able to specify what part of our amazingly complex immune system the problem was in.

They also determined that the patients who returned to health also exhibited significantly greater clonal expansion: their activated B-cells produced more clones designed to target and get rid of the bacteria. Again, in retrospect, not a surprising finding, but one that does open up a possible treatment option that hasn’t previously been available.

b-cell Lyme disease

A type of B-cell called a plasmablast turned out to be the key.

Along the way this group also produced a possible diagnostic test which may a) be able to identify Lyme disease infections very early on and b) have high rates of accuracy.  The current Lyme tests do neither; they’re only about 50% accurate during the early stages of infection when studies show treatments are most effective.

They also demonstrated that Lyme disease prompts the expansion of a type of memory B-cell (CD27−) associated with some infections and, more commonly, with autoimmune diseases (rheumatoid arthritis, lupus and multiple sclerosis).

Possible Therapy

Finally, the results point to an unexpected potential therapy – monoclonal antibody drugs. Monoclonal antibody drugs (the “mabs”, e.g. Rituximab) can be theoretically designed to trigger the immune system to target any cell in the body or to influence how the immune system works in other ways. In cancer, for instance, many monoclonal antibodies have been produced that target specific cancer cells. In autoimmune diseases such as rheumatoid arthritis, Crohn’s disease and ulcerative colitis, monoclonal antibodies bind to and inhibit the pro-inflammatory cytokine TNF-a.

Over 75 monoclonal antibody drugs have been approved by the FDA.  Only one, interestingly, specifically has targeted an infection (HIV).  These drugs have, however, recently been effectively used in Ebola and syncytial virus infections.

The authors suggested that Borrelia burgdorferi (Bb)specific monoclonal antibodies could whack the bacteria hard enough to allow doxycycline to work in all patients, not just those with more robust B-cell responses.  In fact, recent developments in monoclonal antibody production suggest that an anti-Lyme drug could be used prophylactically to provide protection against the bug.  The limiting factor may be expense, but recent developments may bring the cost of these drugs down.

Prospecting in Chronic Fatigue Syndrome (ME/CFS)

This study indicates that prospective studies – studies which follow a population over time as some fall ill – can work really well if the study target is focused correctly.  Starting back with Dr. Lloyd’s Dubbo studies several have been done in ME/CFS. None have achieved the results that this Lyme study did, but they have been illuminating.

The Dubbo studies followed 253 people for 12 months after they were infected with one of three pathogens (EBV, Ross-River Virus, Coxiella burnetii). That 11% met the CDC criteria for ME/CFS after six months indicated that long standing illnesses after serious infections were surprisingly common.  Attempts to figure out why a significant number of people remained ill were largely ineffective though.

Some of the studies were quite small and are probably not conclusive but they suggested that neither increased herpes viral titers (herpes virus reactivation) nor changes in 35 cytokines nor gene expression nor psychological factors played a role.

Dubbo studies

The Dubbo studies found that the severity of the initial infection played a role in who failed to recover from an initial infection.bo

The only finding that initially stood out was the severity of the initial infection. People with more severe symptoms initially were significantly more likely to come down with ME/CFS.  In 2008, however, the group found a possible genetic underpinning for the disease; it turned out that polymorphisms (unusual formations) in genes coding for two cytokines (IFN-y, IL-10) affected how ill a person got and how long they remained ill. The findings suggested that a genetic predisposition for an increased inflammatory response might be tipping some people over into prolonged illnesses.

In 2009 Vollmer-Conna, a member of the Dubbo group, working outside ME/CFS found more evidence that one’s immune status makes a difference. She found immune status prior to surgery significantly affected one’s immune functioning, distress levels and ability to recover after surgery.

Next Jason and Katz began a large study of adolescents that came down with infectious mononucleosis (IM). They found no evidence that reductions in peak work capacity, or activity levels, or problems with orthostatic intolerance,  or reductions in salivary cortisol or natural killer cell number and function played a role in an adolescents inability to recover from IM.  The study, however, did suggest that early damage to autonomic nervous system, to the ability to consume oxygen, as well as psychological factors and differences in cytokine networks  were present in those who failed to recover from IM.

Another Jason-Katz study which did not examine biological factors other than autonomic nervous system functioning found, as did the Dubbo study, that the severity of the initial infection – and the amount of bed rest it prompted – played the most significant role in who remained ill. Psychological factors such as “perceived stress, stressful life events, family stress, difficulty functioning and attending school, family stress, and psychiatric disorders” had no impact.

In 2013 Jason, Katz and others began an even larger study which tracked college students after coming down with infectious mononucleosis. They’ve collected blood samples from and have been following over 4,000 college students over the past couple of years. About 5%  contracted infectious mononucleosis, a common trigger for ME/CFS. Grants applications are being written to further assess autonomic functioning, as well as cytokine, metabolome and saliva biological risk factors..

If Jason et. al. have picked the right target, this fascinating study could tell us more about what goes wrong when someone gets ME/CFS. If it doesn’t then their samples –  banked in liquid nitrogen at -80 degrees C –  provide a potentially invaluable resource for the future.

By capturing the blood of people with ME/CFS before they got sick, as they were getting sick and then after the illness became established, Jason’s unique biobank could allow future researchers to quickly determine if the factor they believe plays a critical role in ME/CFS does – saving much time and money.

Small Non-profit Potentially Makes Big Difference

Showing that you don’t have to be large to potentially make a major difference, this potential Lyme breakthrough came not from the NIH or the CDC but from a small Lyme non-profit – The Bay Area Lyme Foundation  – that’s been in business for just over five years.  The study was the product of an 2014 award, The Bay Area Lyme Foundation Emerging Leader Award, that went to Lisa Blum, PhD, a former Stanford postdoc. That award specifically targets veteran researchers who have not previously worked in Lyme research.

The Simmaron Research Foundation is another non-profit that is seeking to scientifically redefine how a disease is understood and treated.  It is currently funding studies that are using proteomics and metabolomics to study cerebral spinal fluid in ME/CFS, that are assessing the effectiveness of underutilized treatments such as Ampligen, IVIG and Cidofovir, and that are seeking to understand why the rate of a lymphoma is increased in ME/CFS.

Autoimmune Model Proposes Chronic Fatigue Syndrome (ME/CFS) Begins in the Gut

Jonas Blomberg’s paper “Infection Elicited Autoimmunity and Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: An Explanatory Model” was published in “Frontiers in Immunology”, an apt journal for a paper featuring an “explanatory model” of chronic fatigue syndrome (ME/CFS). Autoimmunity is definitely a new “frontier”; as Blomberg points out, it’s possibility not a reality yet, but like other frontiers it evokes new vistas – new opportunities and some new challenges.

European ME/CFS reseachers

Jonas Blomberg headed up a European group which produced an autoimmune model of ME/CFS

Blomberg has recently been immersed in a study designed to validate (or not) Dr. Scheibenbogen’s autoantibody findings in chronic fatigue syndrome (ME/CFS). The lead role the Europeans are taking on in exploring autoimmunity in ME/CFS is evident: Blomberg and Gottfries are Swedish, Scheibenbogen is German, and Mella and Fluge – of the Rituximab trial – are Norwegian.

(Carl-Gerhard Gottfries’ story is so unusual that it warrants a short retelling. Gottfries, a Swedish psychiatrist, recovered from ME/CFS using, of all things, a staphylococcus vaccine.  Gottfries opened an ME/CFS clinic, published his findings and treated patients with the vaccine for several decades until it was withdrawn from the market. Find out more about Gottfries’ fascinating story here.)

There are so many ideas floating around concerning the cause ME/CFS that one is tempted to throw up one’s hands. Is cellular energy production in the dumps? Are the autonomic nervous system problems keeping people wired and exhausted at the same time? Is an autoimmune process pummeling the body? Are hidden infections tormenting ME/CFS patients with never ending flu-like symptoms? Or as Cortene suggests, are problems in the HPA axis wreaking havoc on the rest of the body.

We could go on and on (ion channel dysfunction (Griffiths University); whacked out basal ganglia (Miller/Japanese); microbiome dysregulation (Lipkin & Hornig, Unutmaz, Lombardi), “traveling genes”  (RCCX – Meglathery); atypical sepsis (Bell); neuroinflammation (Younger), (mast cell activation in the hypothalamus – Theoharides. ).

The fact that so many people have proposed so many interesting hypotheses is encouraging, but the downside to such a munificence of possibilities is a kind of inertia. Until the ME/CFS field settles on one or a few models of disease, this small field is inevitably going to progress more slowly that we would wish.

In fact, the two Davises at Stanford (Ron and Mark – not related) have questioned whether the field should devote time and money to chasing down hypotheses at all.  Better, they have suggested, to gather more and more data and see what emerges. That said, something has been emerging – an explanatory model in which autoimmunity plays a key role.

An Autoimmune Model of Chronic Fatigue Syndrome 

Basically, the authors propose that it all starts with your genes and your leaky gut. Not the leaky gut you necessarily associate with ME/CFS but the leaky gut you had before, perhaps long before you came down with ME/CFS.

A Genetic Predisposition

Autoimmune diseases typically feature a strong genetic component and run in families. It’s not that rheumatoid arthritis shows up in family member after family member. It’s that a range of other autoimmune diseases do. Blomberg picks out three intriguing autoimmune diseases – thyroid disease, Sjogren’s Syndrome (SS) and lupus – which studies suggest run in ME/CFS families.

genetic predisposition to chronic fatigue syndrome

Evidence of a genetic predisposition is one of several factors suggesting ME/CFS could be an autoimmune disease.

ME/CFS itself is also associated with diseases Blomberg considers to be emerging autoimmune diseases including hypothyroidism, fibromyalgia and POTS, each of which has been associated with increased levels of autoantibodies. Blomberg clearly believes an autoimmune cluster containing many of the diseases associated with ME/CFS is emerging before our eyes.

High rates of two of those diseases (thyroid, SS) also recently showed up in a postural orthostatic tachycardia syndrome (POTS) study (along with antiphospholipid syndrome).

Blomberg then ploughed through genetic, immune and epigenetic data in ME/CFS, highlighting some findings suggesting autoimmunity might be present.

For instance, autoimmune diseases often occur when HLA molecules improperly display self-antigens to cytotoxic or helper T-cells.  T-cells, it turns out, are often huge drivers of autoimmunity, and when they produce autoimmunity, HLA issues are often prominent. Guess what: an HLA issue has been found in ME/CFS. (Ron Davis is studying HLA genes in ME/CFS.) Another study found that increased prevalence of genetic alteration (a SNP) in a T-cell receptor gene known to play a role in autoimmunity suggested that a T-cell based autoimmune process could be present.

Infections, EBV, Autoimmunity and ME/CFS

Infections often trigger autoimmunity. In fact, the infectious trigger that has sparked ME/CFS for many is one big clue that an autoimmune process may be present. With regard to autoimmunity, the more severe the infection, the better, and several studies show that deficiencies in IgG subclasses may have left people with ME/CFS more vulnerable to a severe infection.

Several gene expression studies showing alterations in T-cell and innate immune response genes suggested that ME/CFS patients’ immune systems could be fighting off an infection.

The Autoimmune Virus

EBV is especially interesting as a facilitator of autoreactivity. Blomberg et. al.

If you’re unlucky enough to first meet up with the Epstein-Barr virus (a common trigger of ME/CFS) during adolescence, it’s likely to trigger your immune system to produce a massive number of antibodies, including autoantibodies.  EBV also produces antigens with highly repetitive structures (e.g., Gly–Ala–Gly–Ala repeats in EBNA1) which tend to confuse the immune system and trigger the production of autoantibodies.

It’s no wonder, then, that infectious mononucleosis (glandular fever) significantly increases the risk of later coming down with at least two autoimmune diseases: multiple sclerosis (MS) and lupus. That’s an interesting enough intersection for Blomberg to assert that the immune responses that ME/CFS, MS and lupus have to EBV should be compared.

The Key Organ – the Gut

Anyone have gut symptoms (cramping, bloating, loose bowels, constipation) prior to ME/CFS?  I did – they weren’t major, but if one area of my body was a little bit off back then, it was my gut.

Blomberg believes your leaky gut may be the key to your illness. Not the leaky gut you necessarily have now, but the leaky gut you had before you got ME/CFS.

gut chronic fatigue syndrome

Blomberg believes a genetic predisposition and a leaky gut set the stage for ME/CFS

The gut is such a potential hotspot for autoimmunity because it contains so much foreign material. In fact the gut has been posited as something of a training ground for the immune system- it provides the immune system with the foreign materials it needs to learn how to distinguish self from non-self.

Gut disturbances are fairly common in autoimmune diseases, and the idea that alterations in gut flora are touching off autoimmune processes is being examined in a host of autoimmune diseases (multiple sclerosis, type 1 diabetes, RA, ankylosing spondylitis). The common occurrence of irritable bowel syndrome (IBS) – and the leaky gut that often comes with it – in ME/CFS presents a potential pathway for autoimmunity.

Blomberg proposes that the breach of your gut barrier created a state of low level chronic inflammation prior to you getting ME/CFS. The gut barrier is important because it’s a place in the body where tolerance (the ability to distinguish between self and non-self antigens) is more difficult to maintain. Given the extraordinary diversity and sheer number of gut bacteria, it’s easy to see how the immune system could be overwhelmed and lose it’s way.

Blomberg believes that slow leakage from the gut created a population of auto-reactive B-cells that remained mostly inactive or quiescent (in a state of anergy), almost like undercover agents infiltrating a city, waiting for the signal to pounce.  At some point a “decisive” immune event flipped them into action, and an autoimmune disease – ME/CFS – was born.

He bases his hypothesis of pathogenic autoantibody creation in ME/CFS on a process that appears to be occurring in lupus. The first step occurs when a genetically predisposed person meets up with bad gut bacteria. First, abnormal but not pathogenic B-cells, which have a “weak autospecificity”, appear. These weakly targeted B-cells are not strongly directed against a specific antigen or part of the cell and don’t appear to be particularly dangerous at first, but the body should still eliminate them. Blomberg proposes that it doesn’t.

Over time exposure to the bad gut bacteria causes the specificity of the B-cells to change – making them more targeted and dangerous. At some point an infection turns them on and they start producing clones of themselves which begin attacking the body. ME/CFS is born.

One possible sign that tolerance – the ability of the body to remove autoantibody-producing cells  – has been breached in ME/CFS are the TFG-B (and IL-10) findings. IL-10 and TGF-B, in particular, are the rare cytokines that are more or less consistently found dysregulated in ME/CFS cytokine studies. It turns out that T-helper cells use both these cytokines to regulate tolerance and anergy at the gut mucosa – the very place Blomberg believes the process of autoimmunity in ME/CFS begins.

Ian Lipkin’s recent study found a significant difference in gut composition between ME/CFS patients with IBS and those without. Some of those differences appeared to affect energy production.

Autoantibodies

It turns out that autoantibodies by themselves are not necessarily indicative of autoimmunity. Some “natural autoantibodies – (mostly IgM antibodies) are simply designed to rid the body of dead/apoptotic, damaged and infected cells and rarely cause autoimmune diseases. Other more dangerous autoantibodies need to be turned on by “cell danger” signals before they do harm. (This is why autoantibodies can often be found in healthy people.)

Autoantibodies have, of course, been found in ME/CFS and related diseases like POTS. At the Montreal conference Blomberg reported that his team was validating Scheibenbogen’s autoantibody findings in ME/CFS. They are one clue that autoimmunity is happening in ME/CFS but they provide, Blomberg reported, only circumstantial evidence of autoimmunity.

It’s the “erroneously activated” B-cells, he reported, that are “the root of the evil”, and it’s these cells that need more focus. Blomberg asserts that an in-depth sequencing of these deranged B-cells is needed. By sequencing the variable immunoglobulin chains found in them it should be possible to trace back to how they turned bad.

Other Possible Evidence of Autoimmunity

As noted earlier, Carl-Gerhard Gottfries successfully used a staphylococcal vaccine for years to treat himself and others with chronic fatigue syndrome (ME/CFS). That approach may have worked because the immune stimulation it provoked may have been able to induce tolerance; i.e. induce the body to remove the bad B-cells.

Since Rituximab knocks down B-cells, thereby removing misbehaving ones, it would seem to fit into Blomberg’s hypothesis. Unfortunately, the Rituximab trial failed, and if anecdotal reports are correct, more completely than we could have imagined.

Another possible indication that autoimmunity is present in ME/CFS are studies suggesting the incidence of Hodgkin’s lymphoma is increased in ME/CFS as it is in other autoimmune diseases.

In the end, though, Blomberg reports that the evidence that autoimmunity is at work in ME/CFS is circumstantial. It relies on the fact that people with ME/CFS often have other autoimmune diseases such as thyroiditis or diseases suspected of involving autoimmunity such as POTS, FM and IBS, that autoantibodies are present, and that immunostimulation (IVIG, staphyloccocus vaccine) may work.

Most of the work, though, needed to fulfill the Witebsky–Rose criteria for autoimmunity, remains to be done.

Primary Biliary Cirrhosis – An Autoimmune Roadmap for Chronic Fatigue Syndrome (ME/CFS)?

At the start of their paper, Blomberg et. al. proposed that their model could explain many of the facets of ME/CFS that have emerged – the most prominent of which are the energy production problems.

An autoimmune disease exists in which an attack on the energy producing processes in the body produces symptoms and findings similar to those found in ME/CFS.  In primary biliary cirrhosis  (PBC) antibodies attack a small fatty acid molecule (lipoic acid) that’s part of the energy producing machinery on the surface of the mitochondria.

pyruvate dehydrogenase

Pyruvate Dehydrogenase -By Jonathanmott09 – Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=18520937

The antibodies in PBC attack the pyruvate dehydrogenase (PDH) enzyme complex which regulates the transition from glycolysis (anaerobic energy metabolism) to the tricarboxylic acid cycle (aerobic energy metabolism). The same issue -the transition from glycolysis to aerobic metabolism – has shown up repeatedly in ME/CFS studies.

Even though PBC is considered a liver disease, it produces enormous amounts of fatigue as well as cognitive problems, orthostatic intolerance and sympathetic nervous system hyperactivity. In fact, Julia Newton, who studied PBC before she studied ME/CFS and started a Rituximab trial in PBC two years ago, stated back in 2013 that,

“…at this stage the muscle and cardiac abnormalities that we have seen in patients with ME/CFS are exactly the same as those that we have seen in patients with PBC.”

Another fascinating aspect of PBC is that the autoantibodies are attacking a molecule, lipoic acid, which is added to the PDH enzyme using a rare process called lipoylation. Because some gut bacteria (Novosphingobium) also use lipoylation, it’s possible that bacterial leakage initiated the autoimmune process causing PBC.

Blomberg suggested that pathogenic, as yet unidentified immunoglobulins directed against mitochondrial proteins could be the source of ME/CFS and exhorted researchers to compare the post-exertional malaise in ME/CFS to other diseases such as fibromyalgia, PBC, etc.

Autoimmunity or Oxidative Stress? 

Finally Blomberg et. al. suggested that oxidative stress could be producing the same energy depleting issues as autoimmunity. That’s an intriguing idea given the comforting consistency oxidative stress study results have had in ME/CFS.  The authors noted that it was recently shown that the oxidation of a critical part of the pyruvate kinase enzyme can effectively block the transition of glycolysis to aerobic metabolism.

Dr. Shungu believes the lactate accumulations and glutathione reductions his studies have validated in the ventricles of the brains of ME/CFS patients are associated with oxidative stress.

Conclusion

Blomberg’s autoimmune model proposes that the seeds for ME/CFS were lain possibly long before the disease appeared and only “sprouted” once a decisive immune event occurred. He believes that a genetic predisposition plus a leaky gut laid the groundwork over time for what eventually became an autoimmune disease.

Autoantibodies provide circumstantial evidence of autoimmunity in ME/CFS but are not nearly enough to validate it.  Blomberg asserted that an intensive study of the abnormal B-cells in ME/CFS could both help to validate that diagnosis and identify the precipitating event which triggered this illness.

If ME/CFS is an autoimmune disease targeting the mitochondria it may have a close cousin called primary biliary cirrhosis (PBC) which produces similar symptoms including enormous fatigue. In PBC autoantibodies disrupt the transition from anaerobic to aerobic energy production – the same process, interestingly enough, that appears to be affected in ME/CFS.

While autoimmune processes could produce the energy problems in ME/CFS, oxidative stress – which studies have found to be consistently high in this disease – could produce the same result.

The Autoimmune Virus? Groundbreaking EBV Finding Could Help Explain ME/CFS

Viral Mystery 

“I’ve been a co-author in almost 500 papers. This one is more important than all of the rest put together. It is a capstone to a career in medical research,” Harley

I sensed some awe in Ron Davis’s voice as he pushed for more understanding of Epstein-Barr Virus’s effects in ME/CFS during a talk at the Brain Science conference.  Davis is not to my knowledge finding much evidence of EBV reactivation in the severe ME/CFS patient study – a surprise – but he is very interested in what happened during that initial EBV infection, which appears to have triggered chronic fatigue syndrome (ME/CFS) in so many people.

Epstein-barr chronic fatigue

A large, complex and very common virus, EBV is responsible for infectious mononucleosis and appears to contribute to numerous autoimmune disorders.

He’s not alone in his “admiration” for the virus. Simmaron’s Advisor, Dr. Daniel Peterson, whose clinical practice and research stemmed from an outbreak in the Lake Tahoe region of Chronic Fatigue Syndrome, has tracked EBV in patients for decades, noting very high titers to EBV and other herpes viruses in subsets of patients.

It’s not surprising that these two important figures have had their eyes on EBV. EBV, after all, is kind of in a league of its own.  An invader of B and epithelial cells, the 50th anniversary of its discovery was recently celebrated with numerous reviews.  Epstein-Barr was discovered in 1966 by Anthony Epstein and Yvonne Barr. It was the first human virus shown to cause cancer. The sequencing of its large genome in 1995 helped launch the genomic era.

One of the more massive and complicated viruses, it’s one of the very few viruses that’s able to avoid elimination: once EBV infects your B-cells, it’s in your body to stay. It’s able to effectively hide from the immune system and reactivate just enough so that when the infected B-cells die it can move on to other cells.

We’re well equipped to ward off EBV when we’re young – it usually produces only minor symptoms – but as our immune systems alter as we age, that changes.  Encountering EBV as an adolescent or adult (infectious mononucleosis, glandular fever)  – as increasingly happens in our germ phobic age – often means months of convalescence as our immune systems struggle to ward off this powerful virus.

The problems don’t stop there. We know that infectious mononucleosis (IM) is a common trigger of ME/CFS but coming down with IM/glandular fever in adolescence has also been shown to increase one’s risk of coming down with multiple sclerosis 2-4 fold and lupus by fifty percent.  Because of EBV’s ability to remain latent in the body, EBV reactivations are a huge problem for transplant patients with compromised immune systems.

The big question concerning EBV is how a virus which has essentially been latent for decades could contribute to serious diseases like MS and lupus. We now may have the answer. Last week, what will probably turn out to be a seminal paper in pathogen research directly showed for the first time how EBV appears to be able to trigger autoimmune diseases later in life and could conceivably play a role in ME/CFS.

The rather hum drum title of the paper “Transcription factors operate across disease loci with EBNA2 implicated in autoimmunity” in the Nature Genetics Journal hardly hinted at the possibilities the paper presents.

Transcription factors operate across disease loci, with EBNA2 implicated in autoimmunity John B. HarleyXiaoting ChenMario PujatoDaniel MillerAvery MaddoxCarmy ForneyAlbert F. MagnusenArthur LynchKashish ChetalMasashi YukawaArtem BarskiNathan SalomonisKenneth M. KaufmanLeah C. Kottyan & Matthew T. Weirauch. Nature Genetics (2018) doi:10.1038/s41588-018-0102-3

EBV  consists of several proteins of which EBNA-2 is one. EBNA-2 is EBV’s main viral transactivator; i.e. it’s a transcription factor that turns on genes in an infected cell that help EBV to survive. Essentially EBNA-2 allows EBV to hijack a cell’s genetics and put them to its own use.

The study – produced by researchers at Cinncinnati’s Children Hospital – demonstrated that once EBV infects B-cells, it turns on genes that have been identified as risk factors for a boatload of autoimmune diseases.

It turns out that even though the virus is, so to speak, latent; i.e. it’s not replicating – its transcription factor is still active  – altering the expression of our genes. The genes that it affects just happen to be the same genes that increase the risk of developing lupus, multiple sclerosis (MS), rheumatoid arthritis (RA), juvenile idiopathic arthritis (JIA), inflammatory bowel disease (IBD), celiac disease, and type 1 diabetes.  Apparently decades of genetic assault from EBV’s transcription factor can set the stage or at least contribute to many autoimmune diseases.

Chronic diseases are usually caused by a variety of genetic and environmental factors. Because not everyone with these transcription factors comes down with a chronic illness, other factors must play a role. The authors believe, though, that the gene expression changes induced by the virus in the B cells could account for a large number of people with lupus and MS who fall ill.

“In lupus and MS, for example, the virus could account for a large percentage of those cases. We do not have a sense of the proportion in which the virus could be important in the other EBNA2-associated diseases,” Harley

Chronic Fatigue Syndrome and EBV/Infectious Mononucleosis – A Short History

Researchers have been trying to figure out – mostly unsuccessfully- what the heck happens to plunge people with infectious mononucleosis into ME/CFS for quite some time.

trigger

Infectious mononucleosis/glandular fever is believed to be a common trigger of ME/CFS

In fact, infectious mononucleosis/glandular fever was probably the first disease associated with ME/CFS. Studies in the mid-1990’s, including one from the CDC, suggested ME/CFS was, at least in part,  “chronic infectious mononucleosis” or “chronic mononucleosis syndrome“.  Even Stephen Straus penned a paper on the “The chronic mononucleosis syndrome“.

Straus’s small 1989 study reporting high rates of psychiatric diagnoses in ME/CFS patients prior to their becoming ill set a theme in motion which was disproved by two Peter White  ME/CFS IM publications.  White found IM/glandular fever to be a particularly strong trigger of ME/CFS which he concluded was probably responsible for about 3,000 new cases of ME/CFS a year in the U.K.

A 1992 Swedish study began a trend of examining people with ME/CFS during infectious mononucleosis and afterwards in order to try and determine what happened. That study concluded that whatever happened was not due to EBV reactivation.

In 2010 Taylor found reduced peak oxygen consumption during exercise in adolescents with ME/CFS after IM compared to IM patients who had recovered. Broderick’s finding of altered cytokine networks associated with Th17 in ME/CFS patients following IM suggested immune dysregulation had occurred.

Glaser’s 2005 study suggested that an EBV encoded enzyme produced by a non-replicating form of EBV could be producing symptoms in ME/CFS.  Lerner’s 2012 study suggested that antibodies to two EBV produced proteins were commonly present in ME/CFS – suggesting that a prolonged immune reaction to EBV might be occurring in ME/CFS as well.

In 2014 Loebel/Scheibenbogen suggested that ME/CFS patients may be having difficulty controlling the early stages of EBV reactivation.   Loebel’s 2017 follow up study suggested that ME/CFS patients’ immune system might be over-reacting to an EBV produced protein and that autoimmunity might be involved.

Leonard Jason’s large IM college student study will hopefully provide clues why some people never recover from it. He’s completing data analysis of a study examining college students who came down with infectious mononucleosis and then ME/CFS. So far Jason has found that at least 4-5% of college students come down with IM while at school.

Treatment Implications

Interestingly, several drugs that are available can block some of the transcription factors EBV has inserted into B-cells.  (I was unable to determine what they are.) The authors also hope the study will help spur more efforts to produce an EBV vaccine.

Next For ME/CFS and EBV

Now that we have evidence that EBV/IM contributes to many autoimmune diseases, it’s hard to think that ME/CFS is not somehow involved. Chronic fatigue syndrome is different in that infectious mononucleosis (and other infections) immediately triggers ME/CFS in many people. What we don’t know is if bouts of IM also trigger ME/CFS 5, 10, 15 or more years later as occurs in these other disorders.

Opportunities for Collaboration Open Up

The big question awaiting ME/CFS now is if the abnormal transcription factors associated with the autoimmune diseases in the recent paper are present. The good news is that a study determining that appears to be within reach of an ME/CFS researcher with the technical ability and funds. In an unusual move, the Cincinnati researchers are making the computer code they used available to other researchers.

“We are going to great lengths to not only make the computer code available, but all of the data and all of the results. We think it’s an interesting approach that could have implications for many diseases, so we’re contacting experts on the various diseases and sharing the results and seeing if they want to collaborate to follow-up on them.” Weinrauch

“This discovery is probably fundamental enough that it will spur many other scientists around the world to reconsider this virus in these disorders” Harley

Collaboration

The Cinncinnati team is providing its computer code free to other researchers

They believe EBV will be implicated in many more diseases, and there is already some evidence that it is.  Using the same analytical techniques, they’ve already identified 94 other diseases including many non-autoimmune diseases in which EBV may play a role.

This is one of the few studies in which the researchers are so jazzed by their results that they’ve dropped all pretenses to modesty. The study results need to be validated, but because EBV is so common and is potentially linked to so many autoimmune (and other diseases), it has the potential to rewrite our understanding of how autoimmune diseases arise. The authors fully recognize the potential importance of their finding. The lead author of the study, John Harley, said:

“I’ve been a co-author in almost 500 papers. This one is more important than all of the rest put together. It is a capstone to a career in medical research,” Harley

One of the senior authors of the study stated:

“This same cast of characters is a villain in multiple immune-related diseases. They’re playing that role through different ways, and doing it at different places in your genome, but it’s the same sinister characters. So if we could develop therapies to stop them from doing this, then it would help multiple diseases.” Matthew Weirauch