All posts tagged cytokines

Major Stanford Study Indicates Chronic Fatigue Syndrome (ME/CFS) is Inflammatory Disorder

There’s been a great deal of controversy and confusion surrounding ME/CFS — even whether it is an actual disease. Our findings show clearly that it’s an inflammatory disease and provide a solid basis for a diagnostic blood test.” Mark Davis

There’s nothing like a high-profile study from a major university. For one thing it can get you publication in one of the most prestigious journals around. The  journal the Montoya/Mark Davis study was published in, The Proceedings of the National Academy of the Sciences, is the official publication of the National Academy of Sciences. Its website gets about 21 million hits a month; this study is going to get around.

Dr. Jose Montoya, the leader of the Stanford Myalgic Encephalomyelitis/Chronic Fatigue (ME/CFS) Initiative  has been talking about this study for years. Now that it’s finally here, it’s making an impact with many media outlets picking it up.

The results were positive and that was good news indeed. This was one study we really didn’t want to fail.

Too Big To Fail?

Cytokine signature associated with disease severity in chronic fatigue syndrome patients Jose G. Montoya, Tyson H. Holmes, Jill N. Anderson, Holden T. Maecker, Yael Rosenberg-Hasson, Ian J. Valencia, Lily Chu, Jarred W. Younger, Cristina M. Tato, and Mark M. Davis.  Proc Natl Acad Sci U S A. 2017 Jul 31. pii: 201710519. doi: 10.1073/pnas.1710519114. [Epub ahead of print)

The study examined the levels of a very large number of cytokines (n=51) in the blood of a very large number of patients and healthy controls (ME/CFS=186; healthy controls= 388). Age, sex, race and something called “nonspecific binding” were accounted for.

missing the mark

This was one study we really didn’t want to fail

One of the biggest ME/CFS immune studies ever undertaken, done at a top University, this was a study that we dearly didn’t want to fail. This is the kind of study likely to be labeled “definitive”. It was on scale with the Columbia cytokine study, where co-authors Ian Lipkin and Mady Hornig analyzed 51 cytokines in 298 patients and 348 healthy controls.  If the results of these two hallmark studies were discordant, it would have had negative consequences to any immune interpretation of this disease.

Smaller cytokine studies in ME/CFS have a history of inconsistency, making the similarities in these two studies important.

Results

The first news was not good. The levels of only two cytokines, TGF-Î (elevated) and resistin (lowered) were different in the patients compared with controls.  Displaying an unusual level of consistency for ME/CFS, TGF-B has now been found elevated in about six out of the ten studies it’s been tested in.

TGF-B has not received a lot of attention possibly because researchers are not sure what it means. An anti-inflammatory cytokine that can have pro-inflammatory properties, the authors noted that TGF-B is elevated in a number of dissimilar conditions (cancer, liver disease, inflammatory bowel diseases among others). The authors suggested TGF-B may have pro-inflammatory properties in ME/CFS; instead of tamping down inflammation, they proposed it may be “may be a major factor in promoting relentless inflammation.”

Big Finding

“Remarkably, 17 cytokines were associated with severity in ME/CFS patients.” The study authors

Dr. Montoya got the money for the study and conceived it, and Mark Davis advised him on it, was the senior author of the paper, and tested the samples in his lab.

Davis has won a slew of prizes (The Paul Ehrlich Prize, The Gairdner Foundation Prize, The King Faisal Prize, the General Motors Alfred P. Sloan Prize) and is on the Open Medicine Foundation’s Scientific Board. He’s a big deal in the immune world.

bulls-eye

Montoya and Davis hit the bulls-eye when they threw severity into the mix

I talked to Davis a couple of days after the study’s publication.  I asked him about the main results; those 17 cytokines that predicted severity – was that a lot?  It’s an important question. A couple of cytokines popping out might mean that the immune system is involved but is not a major player – time to look someplace else.  A lot of cytokines showing up, on the other hand, suggests the immune system may very well be it in ME/CFS – time to dig deeper.

Was 17 cytokines a lot? Even in the staid language of scientific journals the surprise at the size of the effect came through: “Remarkably”, the paper said, “17 cytokines were associated with severity in ME/CFS patients.”

When I asked Davis if it was really a lot, I heard him take a deep breath:  “it’s a lot – really a lot” – he said. Getting a third of the immune factors to show up suggests massive immune involvement. Davis – who is involved in constructing immune signatures for different diseases and health – said everything he’s seen about this disease suggests autoimmunity.  That’s a particularly meaningful statement  from such a well-known immunologist. He’s getting to know ME/CFS pretty well: Montoya’s study is the biggest study his public lab has run.

(Mark Davis has two labs – his private research lab and a larger, more public lab he set up to run many more samples at a time. That lab, which got a big federal grant, was designed to bring the same kind of rigor he uses in his private lab to bigger studies.  Researchers like Dr. Montoya can bring their samples to the lab and have the lab test them. That’s what happened in this study)

A Different Kind of Disease?

Mark Davis thinks ME/CFS is probably an autoimmune disease. You don’t see the kind of overt cytokine increases in ME/CFS that are seen in autoimmune diseases like rheumatoid arthritis  and lupus.  This study, in fact, suggested that cytokines were not increased in the patient group as a whole relative to healthy controls.

Adding severity to the mix, however, suggested that cytokines were heavily involved in this disease. Mark Davis said he’d never seen a disease with mostly normal cytokine levels but which presented such clear indications that cytokines affected symptoms.  He suggested that other diseases like Alzheimer’s might display similar patterns if researchers started looking for them.

In an interview with Miriam Tucker, Dr. Montoya echoed the unusual nature of the disease: he simply called the immune activation in ME/CFS – as he has for some time now – a different kind of inflammation.

“Inflammation is much more complicated than two imperfect old measures [sed rate and C-reactive protein]. We’re showing an inflammation that has not been seen before.” Jose Montoya

Three Options?

But what could be causing this bizarre pattern?  Higher cytokine levels could certainly explain the more severe fatigue in some ME/CFS patients, but how do the low or normal cytokine levels explain the fatigue in the more moderately fatigued patients? They do have ME/CFS after all; even if they are less ill than the severely ill, they are still enormously fatigued but their cytokine levels aren’t elevated at all. In fact the cytokine levels are lower than normal in some of them. Three options have been suggested.

(1) Loss of Immune Control In the Severely Ill

One possibility the paper presented is that the healthier patients with lower levels of pro-inflammatory cytokines are able to control them to some extent. Their immune systems are grinding away but they’re keeping – probably at some cost – the pro-inflammatory elements under control. The control mechanisms of the sicker patients, though, have collapsed – they’re bearing the burden of unremitting cytokine activity.

(2) A Localized Infection

In conversation Mark Davis suggested that a localized infection could also be causing the immune system to react – not with the huge increases in cytokines seen in systemic inflammatory or autoimmune diseases but with small, harder to detect ones.  He’s not the first to suggest that. A couple of years ago Michael Van Elzakker proposed exactly that scenario for ME/CFS.

Different

ME/CFS may be a different kind of inflammatory disorder

Van Elzakker proposed that localized infections – probably involving the vagus nerve – were causing small, hard to detect elevations of cytokines. Meanwhile the infections were playing havoc with the vagus nerve’s ability to communicate sensory and immune information to the brain.

I asked Van Elzakker about the study.  He believes the cytokines this study picked up in ME/CFS are probably spillovers from an infection or injury. He cited Robert Dantzer, an important figure in sickness behavior research and pyschoneuroimmunology, who in a (2014) Trends in Neurosciences review, The Neuroimmune Basis of Fatigue agreed that with regard to fatigue:

 “The measurement of circulating concentrations of cytokines represents the main limitation of the present studies on fatigue and inflammation. Given that cytokines are autocrine and paracrine communication factors, their circulating levels have little functional value and represent mostly spillover from the site of cytokine production and action.

Given how profoundly limited many people with ME/CFS are – Van Elzakker believes these localized infections probably exist in the neuroimmune nerves such as the vagus or trigeminal nerves.

(3) Context  – Is Context King?

There’s another possibility. Gordon Broderick’s modeling work in chronic fatigue syndrome (ME/CFS) suggests that context may be king in the immune system.   During a recent phone call Broderick described the co-expression study he did that found a changed immune landscape in ME/CFS.  Cytokines such as IL-1b, 2, 4, IFN-γ, TNF-α  and IL-10 had larger than expected impacts in ME/CFS patients relative to healthy controls while other cytokines had less impact.

If Broderick’s right, none of the cytokines found in Montoya’s study need to be elevated to have a significant effect – they simply have to be embedded in a dysregulated immune network.

Leptin is Back

This is the second time leptin has shown up in a Stanford study, and the researchers suggested that it might be the keeping the chronic inflammatory state in ME/CFS intact. It turns out that adipokines – cytokines secreted by fat cells – like leptin may be able to trigger neuroinflammation. They’re also found in higher levels in women and may be a particularly important trigger in female dominated inflammatory diseases such as multiple sclerosis.

 Duration

In contrast to the Lipkin/Hornig and another study, this study found little evidence of increased cytokine levels earlier in the disease or decreased levels later in the disease. The small numbers of short duration patients (n=30) in the study, however, could have prevented any findings from reaching statistical significance. Interestingly, the study did not find that disease duration was correlated with severity; i.e. patients who had been ill longer were not necessarily worse off.

 Diagnostic Test?

Mark Davis suggested the findings might prove the basis for a diagnostic test but in conversation indicated we’re far from one right now. Much more study is needed.

The diagnostic test problem is greater in the low to moderately ill patients who have similar cytokine levels to healthy controls. How to devise a test to distinguish them from the healthy controls with similar cytokine levels is the big question.

Montoya reported that his team was working on a five-cytokine panel that would require a doctor first classifying each patient by severity. If Montoya can devise specific cytokine signatures for each level of severity, a test might be feasible, but it’s clearly going to be a complex undertaking.

Big Study (Too Big?)

Montoya rather courageously put a lot money into an area of research – cytokine analyses – that have had their problems in ME/CFS. As the Lipkin/Hornig study and this study showed, when it comes to immune studies size is definitely better.

While it is possible that this study had more controls than needed, at least Montoya didn’t err on the other side – too few patients; that might have been fatal to this study. Mark Davis thought that given all the noise in the data, that a smaller study might not have found much.

 Don’t Think Too Much: the Zen of ME/CFS

In a kind of Zen-like statement Mark Davis cautioned about “thinking too much” about this disease at this point.  Davis wasn’t suggesting not inquiring about the disease, but not coming to conclusions about it.  We’re not there yet. We’re more in a space of creative inquiry than anything else.

tea-house-mt-fuji

Mark Davis warned against coming to conclusions; more views of ME/CFS is what we really need

Things got even more zen-like when Davis referred to a famous series of paintings called Thirty-six views of Mt. Fuji to underscore where we are with ME/CFS right now. The celebrated series by Japanese artist Hokusai shows Mt Fuji from different perspectives including from at dawn, from a window in a house, from behind a huge wave, etc., etc.

To Davis, ME/CFS is like Mt Fuji; we need to look at it from a lot more angles to fully understand it. The most important thing we can do now is to test, test, test and let the data guide us.

This study may demonstrate that more than anything. It, after all, had four highly unusual results – very little evidence of immune dysregulation compared to healthy controls; massive evidence (17 cytokines!) on the other hand, that the immune system is effecting severity, a substantial number (on the other, other hand) of individuals with low or low-normal cytokine levels, and finally two cytokines with abnormal levels which didn’t have anything to do with severity at all.

This study, then, boosted interest in the immune system in ME/CFS, while raising a lot of questions about it at the same time. A lot of work – a lot of exploratory work –  remains to be done to figure this puzzle box of a disease out.

In fact, exploration is largely carrying the day in ME/CFS research. Montoya got hundreds of samples, tested them as widely as possible, analyzed them a bit and then stood back. Ditto with the Ian Lipkin/Mady Hornig immune study,  the metabolomics studies from Armstrong and Naviaux, (Naviaux, however, has a hypothesis), Ron Davis and the Open Medicine Foundation with their severe ME/CFS Big Data study, and Avindra Nath and his deep Intramural NIH study.  They’re all exploring.

Mark Davis’ talk at Open Medicine Symposium on Saturday should be a good one.  NINDS Director Dr. Koroshetz talked up Davis’s exciting findings in the recent NIH Telebriefing, and Ron Davis thinks they may be even more significant than this paper. If you’re at the Symposium you can ask him about his work or Mt Fuji or just say hello and thanks.

Treatment

This study is a major legitimizer and a big spur for more immune studies – particularly big immune studies. One thing it doesn’t present are clear treatment options. When I asked Mark Davis about treatment options, he was unwilling to commit to any line of treatment based on the results. He agreed that basing treatment options off of this study would be like shooting fish in a barrel.

That doesn’t mean the study won’t help on the treatment end. The severity results, after all, scream inflammation. That suggests anti-inflammatories might very well help. Ron Davis noted that many immune affecting drugs are under development right now which might be useful for ME/CFS in the future. We simply need more study to assess which targets might be best.

If Gordon Broderick’s right, though, it may take more than knowing a cytokine’s levels to find the right target. Broderick’s working on complicated models that incorporate the effects hormone levels, in particular sex hormone levels, have on immune factors in ME/CFS.  Broderick believes he’ll be able to devise a treatment approach that pushes the immune system one way and then another in order to nudge it back to a stable and healthy state.

Fatigue or Functioning?

While the multi-dimensional fatigue index used to assess fatigue has been validated as a good measure of fatigue across many diseases, one wonders if a functionality scale might have worked better. Fatigue is what ME/CFS is known for, but it’s real impact is on functioning. It’s possible to be very fatigued and still work, or to be pacing effectively – and not doing much work – and be less fatigued.

The MFI worked well in this study and past ME/CFS studies have used it, but one wonders if a scale that tracks functionality – how much activity one is actually doing – might have been more effective at tracking severity.

 Slow Progress

Montoya has been given much (reportedly $8 million donation in 2008) and promised much, but the ME/CFS work has been slow. He’s a toxoplasmosis expert, possibly the top expert in the country, and he’s been pouring out toxoplasma studies – fourteen since 2015 – but the work in ME/CFS has gone much slower.  Since 2009 he’s been the senior or lead author on just four ME/CFS studies – two of which involved the valganciclovir trial and predated the opening of his ME/CFS center.

This latest study was the most important one – it will undoubtedly help the field – but one hopes that with this monster study out of the way Montoya will be able to move faster on his other ones. His current research projects page lists ten studies. Two involve the Zinns who, unable to publish their work at Stanford, exited to work with Lenny Jason. Those studies are surely not extant.

The eight others, though, involve brain imaging, neuroendocrine, gene expression, cardiovascular, immune and pathogen studies. In a telephone conversation Mark Davis referred to some scintillating results he and Montoya are working on using the immune data Montoya gathered.  Let’s hope we’ll see those results and more from Montoya’s Chronic Fatigue Initiative in the not too distant future.

Conclusion

lighthouse

This study, as did the Lipkin/Hornig study, suggested you have to approach ME/CFS differently than other diseases to be successful.

One of the things that emerged from this study is that ME/CFS really, really is different and woe to any researcher who assumes that it’s not. The regular rules of the road do not apply – you can’t just measure cytokine levels and expect to get anything. You have to dig deeper, and what this study and the large Lipkin/Hornig study before it demonstrated was that if you do dig deeper, you might stumble on something extraordinary.

The study’s excellent pedigree – it’s size, the lab it took place in and the journal it was published in – guarantees it will get noticed and that’s a good thing. The most important aspect of the study may be the legitimization it confers on the illness. Hopefully the study will introduce new researchers intrigued by what could be a new type of inflammatory disorder to the field.  While more work is needed, the study also points to possible future effective treatment options. Lastly, the study indicates, as did the Lipkin/Hornig study, that bigger really is much, much better in ME/CFS research. Hopefully funders will take a cue from these large studies, and support the bigger and more definitive studies this disease needs to move forward.

 

 

 

 

 

 

 

 

 

 

 

 

Is Chronic Fatigue Syndrome An Inflammatory Disease? The 2016 IACFS/ME Conference Overviews Pt II

immune-systemThe immune system’s complexity reared its head again at this conference as Dr. Montoya showcased some of the findings coming out of his large immune studies at Stanford.  Montoya’s assertions that chronic fatigue syndrome (ME/CFS) is similar to systemic inflammatory response syndrome and should be called an inflammatory disorder were intriguing indeed. It’s still, however, hard understand what is going on in the immune system in ME/CFS.

This is a long blog; if you just want the main findings a quickie overview is given at the end of it.

IMMUNE SYSTEM

Montoya’s huge (584 person!) and impressive immune studies –  the largest ever done in this disease – dominated several presentations.  The studies are bit unusual in that they contained about twice as many healthy controls (n=392) as patients (n=192).  Montoya posted an impressive list of 30 researchers he’s collaborating with at Stanford and elsewhere.

He spoke of a complex immune situation often characterized by both up and down immune activation, but which strongly suggested chronic fatigue syndrome is an inflammatory disorder.

Cytokine Study

Cytokines are molecules produced by immune cells that regulate immune functioning in many ways. Montoya tested many cytokines (51) but only two popped out in the first run of this study. That was surprising; large studies are particularly good at finding small but still significant differences, but this study found few differences between the ME/CFS patients and healthy controls than some smaller studies.

Lipkin and Hornig enhanced their cytokine study results by controlling for duration. The key for Montoya was severity. When he added severity to the picture, the immune findings popped out. In the more severely ill patients a rather eye-popping third of the 51 cytokines tested (leptin, CXCL-1, CXLC10, GM-SF, IFN-Y, GM-CSF, IL-4, IL-5, Il-7, IL-12p70, IL-13,  IL-17F, NGF, TGF-b, CCLI, SCF and TGF-a) – most of them pro-inflammatory in nature  – significantly increased.

Montoya proposed that TGF-b, traditionally thought of as anti-inflammatory, may have been acting as a pro-inflammatory cytokine. That cytokine has shown up in several ME/CFS studies before.

Interlude: Cytokine Results Still All Over the Map

The results were encouraging, but cytokine results in this disease are still all over the map. For years researchers have thought they MUST be involved in ME/CFS, but cytokine results have been stunningly inconsistent.

For example, while a 145 person Australian study did, like Montoya’s study, find increased levels of cytokines (IL-10, IFN-γ, TNF-α), none of those cytokines showed up in Montoya’s results.

igg-antibodyA 99 person study from the Klimas group measuring 16 cytokines found significant alterations in 10 of them (increased – LT-a, IL-1a, IL-1b, IL-4, IL-5, IL-6, and IL-12; decreased – IL-8, IL-13 and IL-15.) IL-4/5-were increased in Montoya’s severe ME/CFS group, but IL-13 was decreased in the Klimas study and increased in Montoya’s.

Wyller’s recent large study of ME/CFS adolescents found no cytokine differences between those diagnosed with the Fukuda criteria cytokine and healthy controls. A Japanese/U.S. study found no evidence that either sleep deprivation or exercise effected cytokine levels as well.

The large Landi/Houghton 179 person study of longer duration patients found mostly cytokine reductions instead of increases (reduced levels of IL-7, IL-16, VEGF-a, CX3CLI, CXCL9; increased CCL24). If most of Montoya’s group were early-stage ME/CFS patients, that might help explain the differences, but we don’t know that they were. (Montoya did state that he is going to filter for illness duration.)

The Lipkin/Hornig cytokine study found increased levels of 16 cytokines in early or late duration patients vs healthy controls (IL-1a, IL-1ra, IL-4, IL-12p70, Il-13, CXCL8, TNFα, SFASL, CCL2, CCL3, CD40L, MCP1, TNFSF10, SCF, CFS1, and resistin).  Only three of those (IL-12p70, Il-13, SCF) were found elevated in the Montoya study; thirteen were not.

An Australian study that tracked for severity in a different way from Montoya suggested that more severe patients do have higher cytokine levels. It found reductions in IL-1b, and increases in IL-7, IL-8 and IFN-y. Of those, IFN-y was increased in the Montoya study.

In a much (much) smaller cytokine study published earlier this year, Dr. Fletcher’s study suggested that dramatic shifts in immune functioning may occur over time. IL-a plays an important role in early ME/CFS and then declines. IL-8 levels were abnormally high early on but declined to lower than normal levels after a few years. Il-6 levels were low early on and elevated later. Ironically, the Montoya study didn’t find any of these cytokines elevated in his severely ill patients.

Conclusion (?)

Until cytokine results achieve more consistency they’re clearly not going to get traction in the medical world.  The inconsistency seems surprising as most of these studies are from good labs. It’s possible, though, that subsets are mucking up the issue. Filtering for duration is clearly needed, and Montoya’s study suggested that filtering for severity is as well. The Klimas group’s Gulf War Syndrome study suggested that  gender may need to be accounted for as well.

Dr. Peterson’s atypical patient subset may throw another loop into cytokine results. Peterson’s atypical ME/CFS subset group so dramatically affected cerebral spinal fluid results that it had to be excluded from the study altogether.  Could  this group be effecting blood cytokine results as well?

Researchers are not going to stop studying cytokines – they’re apparently too enticing – and it’s possible that studies underway may help us understand what is going on.  If Lipkin/Hornig can, in their study underway, replicate their cytokine results in different duration patients – that will be something. Ditto with several good day bad day studies underway. If Montoya can duplicate the Lipkin/Hornig duration results that would really be something. Time will tell.

It’s also possible that cytokine levels per se aren’t as important as we might think. Broderick’s models suggest that context is key; in the right context a factor can be important even if it’s levels are not raised.  His models suggest that treatments targeting just two cytokines might be able to enable ME/CFS patients to exercise again. (See upcoming IACFS/ME treatment blog).

Montoya’s network analysis indicated that Il-1B – an important regulatory cytokine associated with increased pain – was the most important factor 24 hours after exercise.  That certainly makes sense given what we know about exercise and pain.

Another possibility is that cytokines in the nervous system are more important than those in the peripheral blood. It’s thought, for instance, that cytokines must contribute to central sensitivity syndromes (CSS’s) such as fibromyalgia as well, but a similar issue with consistency apparently applies there. Staud has suggested that cytokines probably play a major in CSS, but only within the central nervous system.

No Biomarker Yet – An immune signature that shows up only in the more severely ill gives us clues about the illness but obviously isn’t going to work as a biomarker.  But what would happen if Montoya essentially shoved those people into a more severe state by having them exercise? Would adding exercise to the mix make the more moderately ill patients look like more severely ill patients?

Montoya’s Exercise Study

Would exercise make moderately ill ME/CFS patients in the throes of post-exertional malaise look like severely ill patients? The answer to that question was no.

Montoya’s maximal exercise test produced opposite results from the cytokine study done in patients at rest.  This time, exercise reduced the levels of four cytokines (TNF-a, IL-8, CCL4, ICAM-1) while increasing the levels of only 1 (CXCL-10).

Both TNF-a and IL-8 increase during exercise in healthy people, however. The fact that both went down in ME/CFS patients may be notable.  If immune exhaustion is present then perhaps one might expect cytokine levels to drop when the body is faced with an exercise stressor.

A 2014 review of exercise studies reported that while exercise does appear to effect the complement system and gene expression and increase oxidative stress in ME/CFS, it does not appear to effect cytokines. Montoya’s results suggested the opposite.

Genomics Study Suggests Chronic Fatigue Syndrome is an Inflammatory Disorder

At the Stanford Symposium, Montoya announced that the gene expression results indicated that ME/CFS was similar to a disease called systemic inflammatory response syndrome or SIRS. He repeated that assertion again; this time stating that ME/CFS was a “100% match” to SIRS.  (The abstract was a bit more cautious, stating that the gene expression results were “very similar” to it and similar diseases).

SIRS

SIRS has been called a
“cytokine storm”

The concept of SIRS came out of ten years of work at a Toronto trauma lab by Dr. William Nelson. SIRS is  a kind of cytokine “storm” – a term sometimes used in ME/CFS – which refers to a positive feedback cycle that results in higher and higher levels of cytokines.  SIRS also effects both pro and anti-inflammatory cytokine levels as well.

SIRS refers to a state of systemic inflammation after infection or some other insult and can result in organ dysfunction and failure. Intriguingly, given the Australian metabolomic group’s suggestion that the metabolomic results in ME/CFS are similar to sepsis, it’s closely related to sepsis.

SIRS has other manifestations that some may find familiar. Increased heart rates, lower or higher than normal body temperatures, rapid breathing rates, and low white blood cell counts found in SIRS have also been found in ME/CFS. The rapid breathing rates, by the way, are associated with either increased metabolic stress due to infection or inflammation or may signal inadequate perfusion because of the onset of anaerobic cellular metabolism.

Other possible links include fibrin deposition, platelet aggregation, and coagulopathies aka Dr. Berg’s findings in ME/CFS some years ago. Dr. Montoya’s immense gene expression study almost couldn’t have uncovered a more interesting disease to link to ME/CFS.  How serendipitous as well – if this all turns out – that Ron Davis and some members of his Open Medicine Foundation team have done an enormous amount of work on sepsis.

How is SIRS treated? In some ways (blood volume enhancement, anti-anaphylaxis drugs, selenium, glutamine, eicosapentaenoic acid, and antioxidants) that can be helpful in ME/CFS.

Epigenetic Modifications Point at Immune System and HPA Axis

Montoya’s epigenetic study suggested an infection (or some other insult) had indeed occurred in ME/CFS. Greatly increased rate of methylation in ME/CFS patients’ immune regulatory genes suggested some infection or other environmental insult had occurred.

Other epigenetic modifications were found to affect HPA axis genes.  Given the strong interaction between the HPA axis and the immune system, it wouldn’t be surprising at all to find that some event had tweaked both the HPA axis and immune genes in many ME/CFS patients. (The Montoya group is currently engaged in a promising HPA axis study.)

Other gene groups affected by methylation (epigenetic modification) include genes that play a role in, yes, metabolism.  One gene highlighted in a whole genome polymorphism study has been implicated in lactic acidosis (NUFS7). A polymorphism in this gene, which transfers electrons from NADH to CoQ10, could result in increased oxidative stress and reduced mitochondrial output.

Is Chronic Fatigue Syndrome an Inflammatory Disease?

Finding increased immune activation in severe ME/CFS patients, and with gene expression results a close match to SIRS, Montoya asserted that ME/CFS is an overactive immune disease and proposed that its new name should include the word “inflammatory.” Montoya results suggest this, but it’s hard to see how any consensus can be reached until we get more consistent results from the cytokine studies (???).

Pathogens

When asked about retroviruses, Montoya suggested there was no cheese down that tunnel. In several of his newsletters Montoya promised “exciting” new findings regarding pathogens but none were presented at this conference.

Allergy Study Reveals Intriguing Subset

Dr. Levine’s allergy study was, for me, one of the surprise highlights of the conference. This nice big study demonstrated how valuable a resource the multi-site ME/CFS experts centers are, and how valuable a tightly integrated network of research centers will be.

In one of the bigger ME/CFS studies to date, Levine queried 200 patients in five sites regarding the incidence of allergic symptoms/conditions and found that the presence of sinusitis and hives distinguished ME/CFS patients from healthy controls.  (My guess is that the presence of sinusitis is overlooked and understudied in ME/CFS).

allergy subset ME/CFS

An allergy subset appears to have increased pain sensitization as well

The fact that having either of those conditions resulted in patients experiencing more pain suggested that an immune process was ramping up their pain levels.   That hypothesis was strengthened when Levine found that this group also had a much, much higher incidence of migraine, tension headaches, back pain, neck pain, and fibromyalgia.  Plus they had more gut and inflammatory symptoms. Something clearly appeared to be driving a pain sensitization process in these patients.

What is the tie that binds these findings together? Levine suggested it might be mast cell activation. Plus, Dr. Levine noted that both mast cells and neurons secrete two factors: nerve growth factor and substance P, known to increase pain. Then there’s tryptase to consider. A recent study suggested that modification of a tryptase gene could be behind some cases of EDS, POTS, IBS, ME/CFS and FM. Another suggested mast cell activation may be occurring in ME/CFS

This is the kind of study that makes you wonder why the heck it hasn’t been done before. The study was surely not expensive, yet it might illuminate much about ME/CFS.  It was funded by the Hitchens Foundation.

POSTER: RNase L Returns? Novel Isoform of Ribonuclease L Shows up in Fibromyalgia

The idea that an important immune enzyme called RNase L had been broken into pieces and was not only no longer working properly but was actually causing channelopathies and other issues raised a great deal of interest in ME/CFS the 2000’s. At some point work on the enzyme stopped but RNase L was not forgotten.

In a surprise a Spanish group looked for and found the broken-up bits of the enzyme in fibromyalgia. The results were too variable for the 37 dKA form of the enzyme to be considered a biomarker but they did suggest that a subset of FM patients carried it.

Even more surprising was their finding of another broken up bit of RNase L (70 kDa) which was almost totally associated with the FM patients (p<.0001). They’ve create custom-made antibody to identify it and will apparently keep working on it.

PATHOGENS

POSTER: EBV Rides Again

We’ve heard so much about EBV over the years that we forget what a special virus it is. It’s’ true that almost everyone has been infected with EBV, and most have no problem with it, but EBV is no walkover.

When one is exposed to EBV later in life, it causes infectious mononucleosis (glandular fever) and is associated with several forms of cancer (Hodgkin’s lymphoma, Burkitt’s lymphoma, gastric cancer, nasopharyngeal carcinoma, central nervous system lymphomas). Evidence suggests that EBV infections result in a higher risk of many autoimmune diseases including dermatomyositis, systemic lupus erythematosus, rheumatoid arthritis, Sjögren’s syndrome, and multiple sclerosis. Lastly, while hardly mentioned in the medical world (ME/CFS is not even mentioned in the Wikipedia article) but foremost in ME/CFS patients minds, EBV is a well-known trigger of ME/CFS.

EBV must have a multitude of tricks up its sleeve to contribute to so many illnesses. The idea that it plays a major role in ME/CFS has risen and fallen over the years. Right now, that idea seems to be more in its descendant phase, but as Dr. Klimas’s study shows, it ain’t over until it’s over; EBV may still very much figure in this disease.

Micro RNA’s – small bits of RNA – regulate which genes get expressed. It turns out that EBV, tricky virus that it is, encodes viral miRNA’s of its own. (EBV was the first virus found able to do this. Given the immense amount of EBV research being done (over 25 studies published in November alone) that was perhaps no surprise.)

HHV-6

HHV-6 appears to contribute to symptoms in ME/CFS

Peripheral blood mononuclear cells (PBMCs) were collected from ME/CFS patients and healthy controls before, during and after exercise, and various tests were done to assess EBV miRNA’s.  Preliminary results suggested that ME/CFS patients’ cells express higher levels of EBV proteins than normal and thus might be more likely to support EBV reactivation.

Plus some strange features emerged. The immune cells in ME/CFS tended to be smaller and have less volume (Ron Davis has found something similar). Instead of forming a classic “pump” shape the ME/CFS nuclei take on a puckered and wrinkled look as if they were aged. Plus, when a key immune transcription factor called STAT I gets activated, presumably by the virus, it ends up in the wrong part of the cell – a pattern indicative of viral reactivation.

All of this suggests that EBV may be tweaking ME/CFS cells in strange ways and that the virus may still play a part in ME/CFS.

POSTER: A Better HHV-6 Test

It’s clear that herpesvirus tests leave something to be desired and Nancy Klimas’ group is attempting to find a way to improve the diagnostic effectiveness of the Elisa test. The current test are provide only  yes-infected or no-not infected answers and are particularly unreliable at the high and low ends of the spectrum.

This study, involving Dr. Govindan from Tufts University and four Florida researchers, used various statistical tests to see if they could develop a truly “quantitative” Elisa for HHV-6.

The intercept they developed allowed them to accurately stratify patients, and showed that the HHV-6 intercept they produced was negatively associated with physical functioning; i.e. the higher the intercept – the worse the ME/CFS patients physical functioning was. This suggested that a) HHV-6 does contribute to the symptom burden in ME/CFS, and b) that this new test could aid doctors in determining when to apply antiviral therapies.

POSTER: Enterovirus Brain Infection Found

Dr. Chia’s work to get the medical world to take enterovirus infections in ME/CFS seriously continues. He gave a workshop on enteroviruses and seemed to be in demand; every time I saw him he was engaged in conversation with a group of people.

His poster highlighted the possible effects of enteroviruses in the most dramatic way. It told the story of a young man who first developed gut problems and then severe ME/CFS. Tests for herpesviruses were normal, but his Echovirus antibody levels were sky-high.  Stomach and colon biopsies stained positive for enteroviruses but enterovirus RNA was not detected in his blood (it often isn’t).

Unfortunately, the young man failed to respond to either alpha or gamma interferon or to SSRI’s, benzodiazepines or acid suppressants. Repeated MRI’s of his brain and spinal chord were normal. Six years into his illness, at the age of 29, he committed suicide.

His ending was tragic, but his story was not over. His harvested brain provided clues as to what may have happened. Neither a brain culture nor an RT-PCR picked up signs of enterovirus, but a western blot found protein bands which were similar to those found in the young man’s stomach biopsies (but different from those found in tuberculosis and lymphoma).

Dr. Chia concluded that this finding replicated a similar finding dating back to 1994.  He concluded that the

“finding of viral protein and RNA in the brain specimens ….is consistent with a chronic, persistent infection of the brain causing debilitating symptoms. EV is clearly one of the causes of ME/CFS, and antiviral therapy should be developed for chronic EV infection.”

Like herpesviruses, most enteroviral infections are passed off quickly, but like herpesviruses, enteroviruses are also associated with serious disorders including polio, meningitis, myocarditis, hand, foot and mouth disease and others. According to Wikipedia, treatment for enterovirus infections is primitive, consisting mostly of relieving symptoms such as pain as they occur.

One hopes at some point an independent lab will take up Dr. Chia’s work and give it the replication it needs and he deserves.

Conclusions

The cytokine findings are disappointingly inconsistent, but the immune system is a vast place and gene expression, epigenetic modeling and other studies continue to point a finger at it.  The Montoya studies should tell us much, plus the entry of noted researchers such as Ian Lipkin and Mady Hornig,  Maureen Hanson, Derya Unutmaz, Michael Houghton and Patrick McGowan into the field ensure that we’ll be learning much more about the immune system in the years ahead.

Marshall-Gradisnik’s NCNED team is churning out immune studies at a rapid rate, Broderick’s early modeling  studies suggest an immune focused 1-2 punch may knock out post-exertional malaise, and Fluge and Mella are testing another autoimmune drug, cyclophosphamide, in clinical trials.

Both Fluge/Ron Davis believe an immune process may be targeting energy production in our cells, the same may be true for ion channels, and it’s now clear that an autoimmune process is producing POTS in some patients. Every microbiome study thus far suggests altered microbial diversity and/or gut leakage into the blood could be sparking an immune response.

The Simmaron Foundation’s expanded spinal fluid study should give us a better handle on what’s happening in the brain just as new techniques to measure the amount of neuroinflammation present in the brain come online.

Finally, it’s encouraging that researchers are getting serious about subsets – and finding them when they look for them.

Major Findings

  • Increased levels of pro-inflammatory cytokines are associated with increased severity in ME/CFS;
  • Exercise, on the other hand, appears to down-regulate cytokine levels in ME/CFS including several cytokines that are typically increased during exercise in healthy people;
  • Gene expression results suggest ME/CFS is very similar to a sepsis-like condition called systemic inflammatory response syndrome (SIRS) which shares some other characteristics with ME/CFS;
  • Epigenetic modifications suggest that events may have altered the expression of genes involved in both the HPA axis and immune systems in ME/CFS;
  • One subset of ME/CFS with sinusitis and/or hives also falls prey to other pain sensitization type disorders such as migraine, fibromyalgia, headache and back pain. Mast cells could be implicated;
  • A broken up form of RNase L, an important enzyme involved in fighting pathogens, showed up in fibromyalgia;
  • Higher levels of EBV proteins in ME/CFS patients’ cells plus structural abnormalities in their cells suggest EBV reactivation may occur more frequently in ME/CFS;
  • A quantitative Elisa test suggests that HHV-6 contributes to the symptoms of ME/CFS as well;
  • Enteroviral proteins in the brain of a young man with ME/CFS who committed suicide suggested that enteroviruses have infected the brains of some people with ME/CFS.

SR_Donate_6.9.14_1

 

 

Major Study Suggests Early Immune Activation May Drive Chronic Fatigue Syndrome

“This study delivers what has eluded us for so long: unequivocal evidence of immunological dysfunction in ME/CFS and diagnostic biomarkers for disease” W. Ian Lipkin

big me-cfs study

Big study – big results

Distinct plasma immune signatures in ME/CFS are present early in the illness. Hornig. M. Monotoya, J, Levine, S., Felsenstein, D., Bateman, L, Gottshalk, G….Likpin. L. Sci Adv 27 Feb. 2015.

It’s a major study indeed – the first, I believe, to come out of the Hutchins Foundation’s Chronic Fatigue Initiative and the media is picking it up quickly. The Hutchins Foundation doesn’t mess around. They’re putting $10 million into researching chronic fatigue syndrome. They do big rigorous studies with top researchers.

This study with its carefully selected patients from across the country was loaded with ME/CFS expertise. Besides Mady Hornig and Ian Lipkin of Columbia, Dr. Montoya, Dr. Peterson, Dr. Klimas, Dr. Bateman, Dr. Levine and Dr. Komaroff were listed as co-authors.

The Simmaron Research Foundation and Dr. Peterson provided samples for this study. One of  Simmaron goals is to provide samples and data from well-characterized patients to major researchers and institutions.

It’s Biological

“These immune signatures represent the first robust physical evidence that ME/CFS is a biological illness as opposed to a psychological disorder, and the first evidence that the disease has distinct stages.” Columbia University Press Release

Once again we see claims made that finally, finally we have proof that ME/CFS is a biological illness. (The head of the CDC said something similar regarding their study about ten years ago at a National Press Club event.) This time the claim is a bit different, however. This time they have not just evidence but “robust” evidence that ME/CFS is a biological illness.

If the study size is any indicator of robustness – and in a well-designed study it is – their evidence is robust, indeed.

Big, Big, Big Study

This wasn’t just a big study – it was a huge study containing almost 650 patients and healthy controls (298 ME/CFS patients and 348 healthy controls).  (A similarly large study is underway at Stanford).

All the patients met both the Fukuda and Canadian Consensus Criteria.

The study wasn’t just big in size – the 51 immune factors it measured meant it was deep as well, and  leptin was one of the immune factors measured.

Different But Not Substantive

The study started off on a bit of a downer. Differences in immune factors between the ME/CFS patients and the healthy controls were present, but not “substantive”.

Note, however, almost all the immune factors are lowered – not increased –  in the chronic fatigue syndrome patients. We’ll come to a reason for that later.

  •  Pro-inflammatory – IL171A (p<.0043), CXLC10 (p<.04), TNF-B (p<.0028), Il-6 (p<.04), sFasL (p<.01)
  •  Anti-inflammatory – Il-10 (p<.024), CSF1 (p<.025)

The one immune factor moderately  increased in ME/CFS was leptin (p<.03).

That didn’t mean many in the group hadn’t experienced profound immune alterations, though. They had – earlier…

Hit and Run Attack Likely

“The immunopathology of ME/CFS is not static” the authors.

Further analyses uncovered something the authors freely admitted surprised them. The ME/CFS patient’s immune measures didn’t differ by triggering factor or age or even by sex – they differed by time.

chronic fatigue syndrome early immune findings

The key factor for the immune system – was time

Alterations in over half the immune measures found (combined with some very, very low probability factors that the results weren’t correct)  (p< >0002-.0008) indicated that “substantive” differences in immune functioning had existed at one point in time.  The short duration patients showed signs of intense immune activation not found in the other groups.

Both the pro and anti-inflammatory sides of the immune system were on high alert early on in ME/CFS.

Immune Differences Between Short-term ME/CFS patients and Healthy Controls:

  • • Increased levels in ME/CFS: IL1A, IL1B, IL-6, IL-12, IL-17a, Il-17f, IL-8, TNF-a, sFasL, TRAIL, IFN-y, CCL2, TGFa, CSF, resistin, CCL-11, CSF2, IL1RA, IL-13.
    • Reduced Levels in ME/CFS – PDGFBB, CD40L

Cytokine results have been spotty in ME/CFS and that’s been a problem.   A few up or down regulated cytokines just don’t raise many eyebrows in the research world. They’re looking for evidence of broad immune alteration – and here it is. I don’t think anybody has seen this kind of sweeping immune activation in ME/CFS before.

Viral Fighter Stands Out

A logistic regression suggested that IFN-y played a particularly significant role in the immune system activation. Produced mostly by natural killer and cytotoxic T-cells – two cells with similar problems in ME/CFS – IFN-y is both an immune stimulator and pathogen inhibitor. (Microglia are big IFN-y producers in the central nervous system).

The IFN-y findings suggest either a pathogen attack or an autoimmune shift may be triggering the immune upregulation seen early in the disease.

infection chronic fatigue syndrome

Bug alert! The early immune findings were consonant with a pathogen attack.

High IFN-y levels are associated with Th2 dominance in the immune system and an increased risk of autoimmune processes. Post-viral fatigue has been associated with high IFN-y levels, and alterations in the IFN-y gene have been associated with increased fatigue following infection as well.

IFN-y also showed up in Broderick’s small study examining 16 cytokine levels in adolescents in the first two years after coming down with infectious mononucleosis. Four cytokines IL-8, Il-23, IL-5 and IL-2 were significantly altered or nearly significantly altered.

IFN-y levels were not increased but a computer model suggested it and four other cytokines constituted an immune signature that differentiated people who came down with ME/FS after IM and those who recovered.

Mady Hornig on the Study

IL-5 levels were significantly decreased in ME/CFS patients but IL-5 did not, interestingly enough, make it into the computer model. Further analysis indicated that IL-5 levels were significantly correlated with Il-23 and IFN-y: two cytokines that did make into the model. These cytokines were essentially analogues for IL-5 in the body.

THE Pathway???

IFN-y also accelerates tryptophan degradation by activating the indoleamine-2,3 deoxygenase enzyme in the kynurenine pathway – Mady Hornig’s favorite pathway. That pathway produces neurotoxic substances that increase production of the excitatory neurotransmitter glutamate that some researchers believe is in play in both fibromyalgia and ME/CFS. Andrew Miller of Emory University has earmarked the kynurenine pathway in ME/CFS.

kynurenine pathway chronic fatigue

Could the kynurenine pathway be it for ME/CFS?

Cognitive problems and mood changes have been associated with up-r egulation of the kynurenine pathway in diseases ranging from Alzheimer’s to depression. In fact, disruption of the one part or other of the kynurenine pathway occurs in many neurological and psychological disorders.

The authors were confident enough to hypothesize that lesions produced by high IFN-y levels early in the disease are producing the cognitive slowing and depression found in ME/CFS. Andrew Lloyd of the Dubbo project has been suggesting for years that high cytokine loads early in the disease process had disrupted brain functioning, but nobody has gotten this specific before. Now Hornig and Lipkin et. al are proposing a specific mechanism for that: IFN-y produced lesions.

“We propose that IFN-y mediated lesions in kynurenine metabolism may culminate in the depression and psychomotor tardiness (slowed information processing) that contribute to disability in some patients with ME/CFS”.

That kynurenine pathway gets more intriguing when we consider that IFN-y activation and tryptophan degradation has been associated with chronic Epstein-Barr virus infection. Epstein-Barr virus is often associated with infectious mononucleosis – a common trigger of ME/CFS.

CD40L

CD40L appears to be another early key immune factor. A clear driver of immune functioning in the healthy controls and longer-term ME/CFS patients, CD40l was found to be reduced and strangely disengaged from the immune system in shorter-term ME/CFS patients.

A B-cell maturation regulator, deficiencies in CD40L are associated with recurrent infections and unexplained cognitive issues and CD40 deficient mice exhibit major immune deficiencies. Citing the Fluge/Mella Rituximab study the authors suggested the collapse of this immune factor   early in this disease could be important.

One scenario proposed by this study – natural killer and cytotoxic T-cells pumping out IFN-y early in the disease only to collapse later on–appears to fill in some holes that smaller studies would have missed. If this study is correct then maybe 20% of the patients in any study have probably had ME/CFS for three years or less. That would mean that the typical low NK dysfunction will show up but the up-regulation early in the disease the authors believe may be contributing to that doesn’t.

Flipping the Switch

That suggests that somewhere around the 3rd year of illness major immune shift occurs. The immune system flips from being hyperactive not to being normal but to being somewhat under active.

Dr. Hornig described a condition of immune system burnout:

“It appears that ME/CFS patients are flush with cytokines until around the three-year mark, at which point the immune system shows evidence of exhaustion and cytokine levels drop.”

primed for burnout cfs

Does the immune system get burned out in longer duration ME/CFS patients?

There’s something very right about “immune exhaustion” being associated with this disease The fact that many cytokines  increased in the early stages of ME/CFS are  decreased in the later stages suggests a kind of burnout process is occurring.

Poor natural killer cell functioning in ME/CFS is often described as a type of immune system “burnout” and evidence is emerging of similar cytotoxic T-cell problems as well.

Leptin Again

It’s hard for me parse how leptin showed up in this study. The only immune factor increased in the whole ME/CFS group vs the controls, leptin was highlighted in one network analysis of early duration patients and showed up moderately in two others. The authors noted that it was tightly correlated with most of the immune factors later in the disease but not early.

Another cytokine called PDGFBB appeared to be the main driver of the immune reductions later in the disease.

Hit and Run Again

That suggests the disease has in some way moved on from the immune system. The authors of the paper didn’t have a great explanation for why people remained ill after their immune system activation had died down or had become decreased. If Younger’s findings pan out perhaps the lone elevated immune marker – leptin – found is enough.

hit and run me/cfs

The findings suggested ME/CFS is a hit and run disease.

A email to Jarred Younger gave a quick answer  and a warning that it was not based on a close reading of the paper. He suggested systemic inflammation may drive ME/CFS early on but sensitized microglia and astrocytes in the central nervous system drive it in its later stages. Because we don’t have good ways to test central nervous system inflammation at that point the disease mostly becomes invisible to testing afterwards.

In fact, the authors tantalizingly noted because ME/CFS appears at least in part to be a central nervous disorder cerebral spinal fluid may very well be a better medium to investigate than peripheral blood. That could suggest we’re due some more important findings in a couple of weeks when the Simmaron Research Foundation/Chronic Fatigue Initiative CSF study is published.

The High Cytokine- Longer Duration Patients?

The study doesn’t make any mention of longer duration patients ME/CFS patients with high cytokine levels. Anecdotal reports from patients indicate they are definitely out there, but this study – involving many quite ill patients being seen at ME/CFS practitioners – suggests that they probably constitute a relatively small subset of patients.

Conclusion

“We now have evidence confirming what millions of people with this disease already know, that ME/CFS isn’t psychological,” Mady Hornig, MD

This large study presents what appears to be almost novel finding in medicine: distinct before and after stages early in a chronic illness. In the early stages of ME/CFS (first 3 years) a distinct and impressive immune activation is present that is followed by modest immune deactivation.

The early immune activation is highly suggested of an infection or some other immune altering process.

The study may ultimately open up possibilities for treating patients with recent onset but provides no possible treatment options at this point for patients who have been sick longer. The  more modest immune deactivation found later in the disease suggests that the core causes of the disease are either found elsewhere or were not illuminated by the study.

A major question facing researchers now is finding ways to translate this hit and run immune activation or viral infection into long lasting central nervous system problems. Microglia sensitized by chronic immune activation/kynurenine pathway activity is one possible answer.

Ian Lipkin’s statement that they hope to find important answers in their microbiome study suggests he believes a permanently altered microbiome  could provide an answer to that question.

“The question we are trying to address in a parallel microbiome project is what triggers this dysfunction.”Ian Lipkin

The authors statement that cerebral spinal fluid may provide a better medium for understanding this disease could mean we’re in for some interesting findings in a couple of weeks.  The Simmaron Research Foundations rare  and extensive trove of cerebral spinal fluid samples from ME/CFS patients provided the foundation for that study.

Stay tuned!